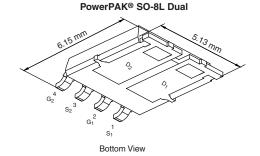
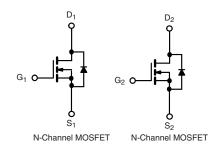


Automotive Dual N-Channel 40 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	40				
$R_{DS(on)}(\Omega)$ at $V_{GS} = 10 \text{ V}$	0.0093				
$R_{DS(on)}(\Omega)$ at $V_{GS} = 4.5 \text{ V}$	0.0111				
I _D (A) per leg	30				
Configuration	Dual				


FEATURES


- TrenchFET® Power MOSFET
- 100 % R_g and UIS Tested
- AEC-Q101 Qualifiedd
- Material categorization:
 For definitions of compliance please see www.vishay.com/doc?99912

ROHS COMPLIANT HALOGEN FREE

ORDERING INFORMATION	
Package	PowerPAK SO-8L
Lead (Pb)-free and Halogen-free	SQJ912AEP-T1-GE3

ARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V_{DS}	40	V
Gate-Source Voltage		V_{GS}	± 20	V
Continuous Drain Currenta	T _C = 25 °C	1	30	
Continuous Drain Current	T _C = 125 °C	T _C = 125 °C	29	
Continuous Source Current (Diode Conduction) ^a		I _S	30	Α
Pulsed Drain Current ^b		I _{DM}	120	
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	26	
Single Pulse Avalanche Energy	L=U.I IIIH	E _{AS}	34	mJ
Maximum Dawar Dissinationh	T _C = 25 °C	Ъ	48	W
Maximum Power Dissipation ^b	T _C = 125 °C	P_{D}	16	VV
Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) ^{e, f}		T _J , T _{stg}	- 55 to + 175	00
		-	260	°C

THERMAL RESISTANCE RATINGS						
PARAMETER		SYMBOL	LIMIT	UNIT		
Junction-to-Ambient	PCB Mount ^c	R_{thJA}	85	°C/W		
Junction-to-Case (Drain)		R_{thJC}	3.1	C/VV		

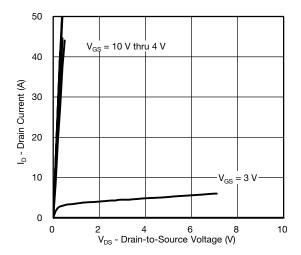
Notes

- a. Package limited.
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- c. When mounted on 1" square PCB (FR4 material).
- d. Parametric verification ongoing.

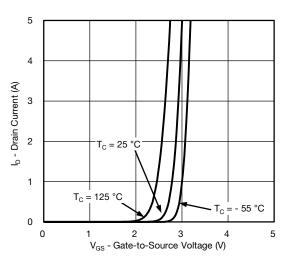
S13-2015-Rev. A, 30-Sep-13

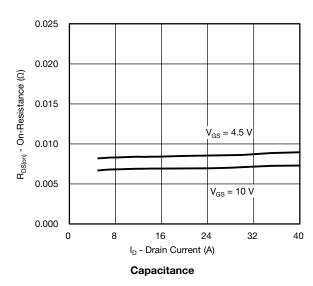
- e. See solder profile (www.vishay.com/doc?73257). The PowerPAK SO-8L is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- f. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

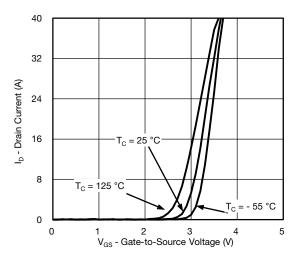
PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static		_			•		
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 250 μA	40	-	-	V
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μA	1.5	2	2.5	V
Gate-Source Leakage	I _{GSS}	V _{DS} =	$0 \text{ V}, \text{ V}_{GS} = \pm 20 \text{ V}$	-	-	± 100	nA
		$V_{GS} = 0 V$	V _{DS} = 40 V	-	-	1	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V	V _{DS} = 40 V, T _J = 125 °C	-	-	50	μΑ
		$V_{GS} = 0 V$	V _{DS} = 40 V, T _J = 175 °C	-	-	150	
On-State Drain Current ^a	I _{D(on)}	V _{GS} = 10 V	$V_{DS} \ge 5 V$	30	-	-	Α
		V _{GS} = 10 V	I _D = 9.7 A	-	0.0077	0.0093	
Drain-Source On-State Resistance ^a		V _{GS} = 4.5 V	I _D = 8.9 A	-	0.0093	0.0111	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 9.7 A, T _J = 125 °C	-	-	0.0138	Ω
		V _{GS} = 10 V	I _D = 9.7 A, T _J = 175 °C	-	-	0.0169	
Forward Transconductance ^b	9 _{fs}	V_{DS}	= 15 V, I _D = 10 A	-	58	-	S
Dynamic ^b							
Input Capacitance	C _{iss}			-	1438	1835	
Output Capacitance	C _{oss}	$V_{GS} = 0 V$	$V_{DS} = 20 \text{ V}, f = 1 \text{ MHz}$	=.	217	271	рF
Reverse Transfer Capacitance	C _{rss}	7		-	91	114	
Total Gate Charge ^c	Qg			-	25.6	38	
Gate-Source Charge ^c	Q _{gs}	V _{GS} = 10 V	$V_{DS} = 20 \text{ V}, I_{D} = 11.3 \text{ A}$	=.	4	-	nC
Gate-Drain Charge ^c	Q _{gd}	7		-	4	-	
Gate Resistance	R _g		f = 1 MHz	0.72	1.44	2.2	Ω
Turn-On Delay Time ^c	t _{d(on)}			=.	10	15	
Rise Time ^c	t _r	V_{DD} = 20 V, R_L = 20 Ω $I_D \cong$ 1 A, V_{GEN} = 10 V, R_g = 1 Ω		-	9	14	
Turn-Off Delay Time ^c	t _{d(off)}			-	23	35	ns
Fall Time ^c	t _f			-	11	17	
Source-Drain Diode Ratings and Char-	acteristics ^b						
Pulsed Current ^a	I _{SM}			=.		120	Α
Forward Voltage	V_{SD}	I _F =	_	0.8	1.1	V	


Notes

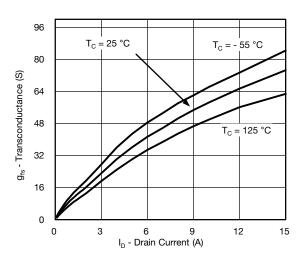
- a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

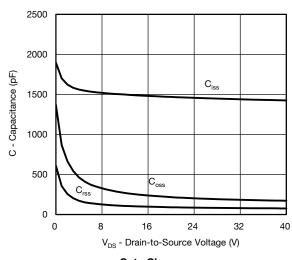

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



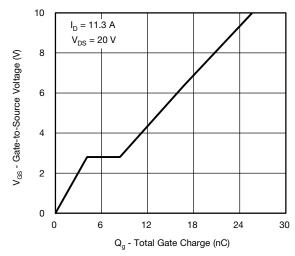
Output Characteristics



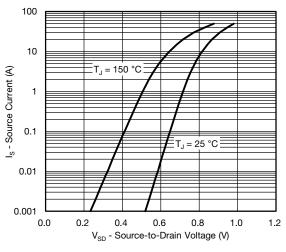
Transfer Characteristics

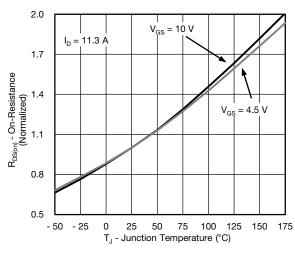


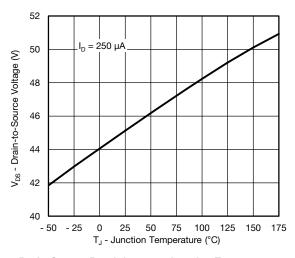
Transfer Characteristics

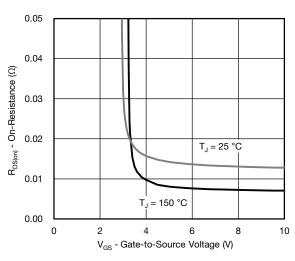


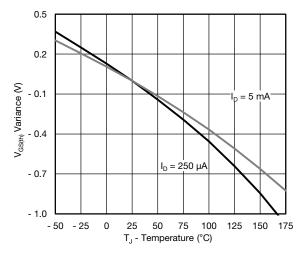
Transconductance



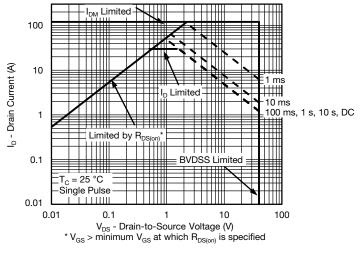

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

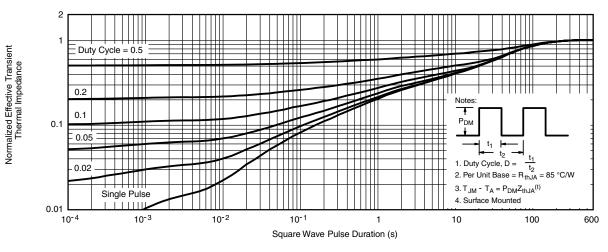

Gate Charge


Source Drain Diode Forward Voltage

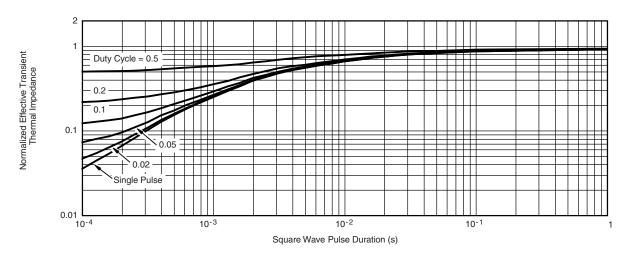

On-Resistance vs. Junction Temperature

Drain-Source Breakdown vs. Junction Temperature


On-Resistance vs. Gate-to-Source Voltage


Threshold Voltage

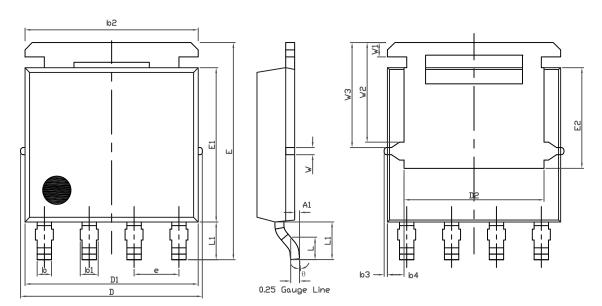
THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)


Safe Operating Area

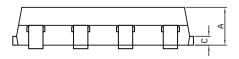
Normalized Thermal Transient Impedance, Junction-to-Ambient

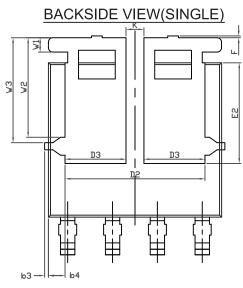
THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case


Note

- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Case (25 °C) are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62876.



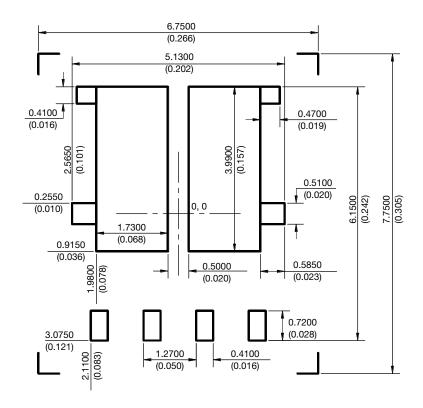
PowerPAK® SO-8L Case Outline 2

TOPSIDE VIEW

BACKSIDE VIEW(DUAL)

DIM		MILLIMETERS			INCHES		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	1.00	1.07	1.14	0.039	0.042	0.045	
A1	0.00	-	0.127	0.00	-	0.005	
b	0.33	0.41	0.48	0.013	0.016	0.019	
b1	0.44	0.51	0.58	0.017	0.020	0.023	
b2	4.80	4.90	5.00	0.189	0.193	0.197	
b3		0.094	•		0.004		
b4		0.47			0.019		
С	0.20	0.25	0.30	0.008	0.010	0.012	
D	5.00	5.13	5.25	0.197	0.202	0.207	
D1	4.80	4.90	5.00	0.189	0.193	0.197	
D2	3.86	3.96	4.06	0.152	0.156	0.160	
D3	1.63	1.73	1.83	0.064	0.068	0.072	
е		1.27 BSC			0.050 BSC		
Е	6.05	6.15	6.25	0.238	0.242	0.246	
E1	4.27	4.37	4.47	0.168	0.172	0.176	
E2	2.75	2.85	2.95	0.108	0.112	0.116	
F	-	-	0.15	-	-	0.006	
L	0.62	0.72	0.82	0.024	0.028	0.032	
L1	0.92	1.07	1.22	0.036	0.042	0.048	
K		0.51			0.020		
W		0.23	.23 0.009				
W1		0.41		0.016			
W2		2.82			0.111		
W3		2.96		0.117			
q	0°	-	10°	0°	-	10°	

ECN: S19-0643-Rev. B, 05-Aug-2019


DWG: 6044

Note

• Millimeters will gover

RECOMMENDED MINIMUM PAD FOR PowerPAK® SO-8L DUAL

Recommended Minimum Pads Dimensions in mm (inches) Keep-out 6.75 (0.266) x 7.75 (0.305)

www.vishay.com

Vishay Siliconix

PowerPAK® SO-8, PowerPAK® SO-8L, PowerPAK® 1212-8, PowerPAK® 1212-8S, PowerPAK® 1212-8W, PowerPAIR® 6 x 3.7, PowerPAIR® 6 x 5, PowerPAIR® 3 x 3

7401 = example base part number or marking code ^a

= Siliconix logo

LL = lot code

 \triangle = ESD symbol

= pin 1 indicator

T = assembly factory code

Y = year ode

W = week code

F = wafer fab code

Note

a. These digits will be a code, if indicated on the datasheet. Otherwise, the digits will be the base number like indicated in the example

YEAR CODE	YEAR CODE							
YEAR	CODE	YEAR	CODE					
2010	0	2020	0					
2011	1	2021	1					
2012	2	2022	2					
2013	3	2023	3					
2014	4	2024	4					
2015	5	2025	5					
2016	6	2026	6					
2017	7	2027	7					
2018	8	2028	8					
2019	9	2029	9					

www.vishay.com

Vishay Siliconix

WEEK CODE	
WORK WEEK	CODE
1 to 6	1
7 to 12	2
13 to 18	3
19 to 24	4
25 to 30	5
31 to 36	6
37 to 42	7
43 to 48	8
49 to 53	9

The current marking strategy is reflected. Contact your local sales representative for historical marking strategies for these packages.

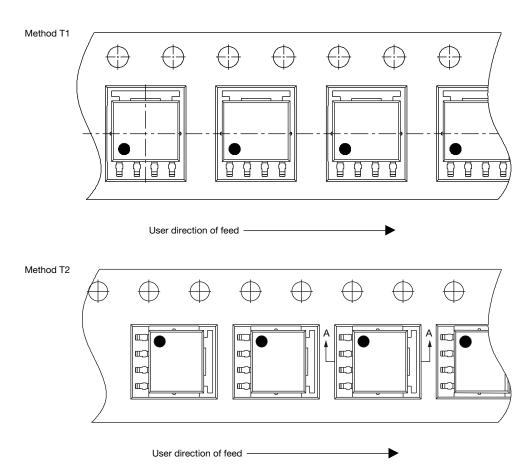
SQ MOSFET Ordering Information

Vishay Siliconix

Ordering Code for SQ Series Automotive MOSFET

Standard ordering code for SQ series of automotive MOSFETs can be derived per the following table:

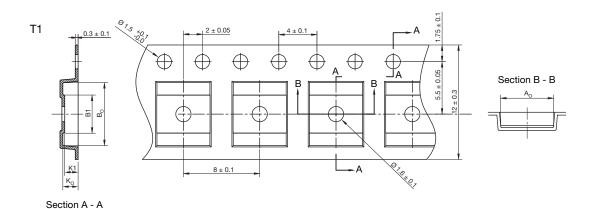
PACKAGE TYPE	DATASHEET PART NUMBER	ORDERING SUFFIX	ORDERING PART NUMBER
PowerPAK® SC-70	Datasheet part number	-T1 GE3	Datasheet part number + "-T1_GE3"
FOWEIFAR® 30-70	(example: SQA401EJ)	-11_GL3	(example: SQA401EJ-T1_GE3)
PowerPAK® 1212	Datasheet part number	-T1_GE3	Datasheet part number + "-T1_GE3"
FOWEIFAR* 1212	(example: SQ7415AENW)	-11_GE3	(example: SQ7415AENW-T1_GE3)
PowerPAK® SO-8L	Datasheet part number	-T1 GE3	Datasheet part number + "-T1_GE3"
FOWEIFAR® 30-6L	(example: SQJ459EP)	-11_GE3	(example: SQJ459EP-T1_GE3)
PowerPAK® 8 x 8L	Datasheet part number	-T1 GE3	Datasheet part number + "-T1_GE3"
POWEIPAN® 6 X 6L	(example: SQJQ402E)	-11_GE3	(example: SQJQ402E-T1_GE3)
SC-70	Datasheet part number	T1 OF0	Datasheet part number + "-T1_GE3"
50-70	(example: SQ1431EH)	-T1_GE3	(example: SQ1431EH-T1_GE3)
COT 00	Datasheet part number	T1 OF0	Datasheet part number + "-T1_GE3"
SOT-23	(example: SQ2389ES)	-T1_GE3	(example: SQ2389ES-T1_GE3)
TSOP-6	Datasheet part number	-T1 GE3	Datasheet part number + "-T1_GE3"
1507-0	(example: SQ3427EV)	-11_GE3	(example: SQ3427EV-T1_GE3)
00.0	Datasheet part number	T1 OF0	Datasheet part number + "-T1_GE3"
SO-8	(example: SQ4005EY)	-T1_GE3	(example: SQ4005EY-T1_GE3)
TO-252 / DPAK,	Datasheet part number	CE2	Datasheet part number + "_GE3"
Reverse lead DPAK	(example: SQD10N30-330H)	_GE3	(example: SQD10N30-330H_GE3)
TO-263 / D ² PAK,	Datasheet part number	CE2	Datasheet part number + "_GE3"
D ² PAK-7L	(example: SQM40022EM)	_GE3	(example: SQM40022EM_GE3)
TO 200 TO 200	Datasheet part number	CE2	Datasheet part number + "_GE3"
TO-220, TO-262	(example: SQV120N10-3M8)	_GE3	(example: SQV120N10-3M8_GE3)

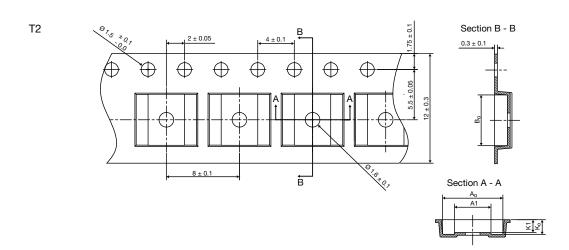

Note

For bare die parts and for non-standard orientations in tape (such as T2, T4) please contact your local sales or marketing for ordering code information

Device Orientation for PowerPAK® SO-8L

DEVICE ORIENTATION				
PACKAGE	METHOD			
PowerPAK SO-8L/BWL auto/BWL 2mil auto	T1/T2			


Revision control of this drawing is maintained through Document Control, Pack Specification-PACK-0007-24


Note

• For carrier tape drawing 93-5259-X, use version -1

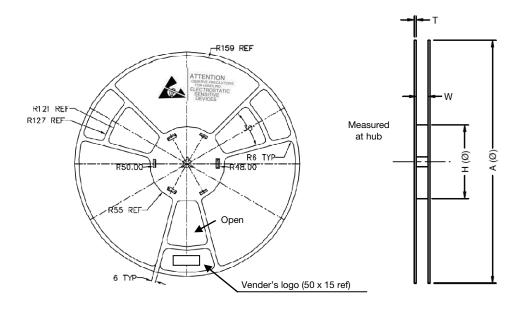
PowerPAK® SO-8L Carrier Tape

Version	A _O	A1	B _O	B1	K _O	K1	Quantity per reel
T1 / - 1	5.55 ± 0.1	-	6.60 ± 0.1	4 ± 0.15	1.6 ± 0.1	1.4 ± 0.1	3000
T2 / - 2 ^a	6.60 ± 0.1	6.60 ± 0.1 4 ± 0.15 5.55 ± 0.1		-	1.6 ± 0.1	1.4 ± 0.1	3000

Notes

- a. Not standard offering. Please contact local sales office for availability.
- $^{(1)}$ 10 sprocket hole pitch cumulative tolerance \pm 0.2 mm.
- (2) Camber not to exceed 1 mm in 100 mm, also not to exceed 1.5 cm in 1 m actually.
- (3) Material: black conductive or black static dissipative.
- $^{(4)}$ A_o and B_o measured on a plane 0.3 mm above the bottom of the pocket.
- (5) K_o measured from a plane on the inside bottom of the pocket to the top surface of carrier.
- (6) It should be measured from:
 - a. sprocket hole to pocket center.
 - b. sprocket hole to pocket hole.
- (7) All size in mm unless specified.
- (8) Tolerance will be \pm 0.1 mm unless specified.
- (9) Vishay part number must be labeled at all reels of carrier tape.
- (10) Surface resistivity: 10^4 to 10^{11} Ω .
- (11) Version suffix as above table shown.

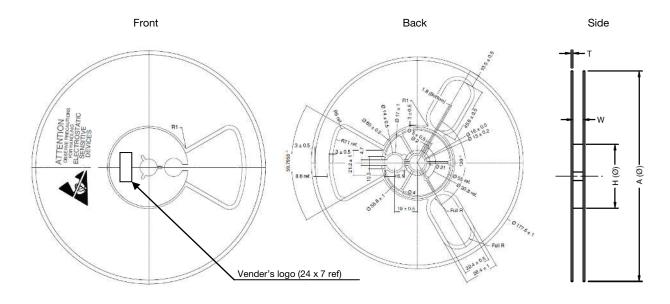
ECN: C15-1433-Rev. F, 02-Nov-15


DWG: 93-5259-X

Revision: 02-Nov-15 1 Document Number: 69632

Reel

330 mm Reel (Lock Reel)


Notes

- 1. Material: antistatic or conductor plastic
- 2. All dimensions in mm
- 3. ESD-surface resistivity -10⁴ Ω to 10¹¹ Ω
- 4. Color: black

VER	APPLICATIO	DN	Α	W	TAPE WIDTH	Н	T
- 1	SOIC-14/16 TO-251 (Short Lead) TO-252/TO-252 (Reverse Lead) PLCC-20 TSSOP-8/14/16/20/28 SSOP-24 SOIC-16 (W) PLCC20	PowerPAK MLF 9 x 9 PowerPAK MLP 6 x 6 MLF 8 x 8 PowerPAK 8 x 8L PowerPAK 8 x 8 MLP57/MLP66/MLP77/MLP46 PowerPAK 5 x 9	330 ± 2	16.4 ⁺² -0	16	100 ± 1	2.5 ± 0.5
- 2	SOIC-8 (N), SOIC-8 (N) epad MSOP-8/10 PowerPAK® SO-8 PowerPAK 1212 PowerPAK 1212-8W MICRO FOOT® MLP33-5, MLP33-8, MLP33-10 QFN (4 x 4)/(3 x 3)/DFN-10 (3 x 3) MLP44/MLP4535/MLP55/MLP65/MLP56	PolarPAK® PowerPAIR® 6 x 5 PowerPAIR 6 x 3 J PowerPAIR SO-8L PolarPAK1215 PowerPAIR 6 x 3.7 PowerPAK SO-8L PowerPAK SO-8L PowerPAK SO-8DCWL Power PAIR 3 x 3 S Power PAIR 3 x 3 F Power PAIR 3 x 3 F	330 ± 2	12.4 +2 -0	12	100 ± 1	2.5 ± 0.5
- 4	SOT-23/143 SC70 MICRO FOOT	TSOP-6, 1206-8 ChipFET PowerPAK SC70 PowerPAK SC75	330 ± 2	8.4 +1.5 -0	8.4	100 ± 1	2.5 ± 0.5
- 5	SOIC-20W/24W D2PAK SSOP-28 QSOP-36	PowerPAK MLF 10 x 10 MLPA6C PLCC28	330 ± 2	24.4 +2 -0	24	100 ± 1	2.5 ± 0.5
- 8	KGD		330 ± 2	16.4 ⁺² ₋₀	16	130 ± 1	2.5 ± 0.5

Revision: 01-Feb-2021 1 Document Number: 71385

178 mm Reel (Complete Reel)

Notes

- 1. Material: antistatic or conductor plastic
- 2. All dimensions in mm
- 3. ESD-surface resistivity -10⁴ Ω to 10¹¹ Ω 4. Color: black

VER	APPLICATION		Α	W	TAPE WIDTH	Н	T
- 3	SOT-23/143 TSOP-5/6/SC70JW-8L 1206-8 ChipFET® SC70/SC75A/SC89 MICRO FOOT SC-89 (SOT-666) SOT23-5, 6 KGD WCSP PowerPAK 0806 PowerPAK SC70	PowerPAK SC75 MiniQFN PowerPAK MLP22-5 PowerPAK ChipFET PowerPAK SC75-6L (PIC) PowerPAK TSC75-6L (PIC) TDFN4 1.2 x 1.6, TDFN8 2 x 2 Thin PowerPAK SC-70 Thin PowerPAK SC-75 µDFN-6L 1 x 1 µDFN-4L 1 x 1	178 ± 2	8.4 ^{+1.5} ₋₀	8.4	62 ± 2	1.5 ± 0.5
- 7	MICRO FOOT PowerPAK 2 x 5	KGD	178 ± 2	12.4 +2 -0	12	55 ± 2	1.6 ± 0.25
ECN: C21-0040-Rev. CA, 01-Feb-2021 DWG: 93-5211-X							

N-CHANNEL ACCELERATED OPERATING LIFE TEST RESULT					
Sample Size	15 334				
Equivalent Device Hours	6 915 815 331				
Failure Rate in FIT	0.132				

Failure Rate in FIT is calculated according to JEDEC Standard JESD85, *Methods for Calculating Failure Rates in Units of FITs*, based on accelerated high temperature operating life test results by using an apparent activation energy of 0.7 eV. The junction temperature of the device at use is assumed to be 55 °C. A constant failure rate distribution is assumed. The upper confidence bound of the failure rate is 60 %.

Silicon Technology Reliability

Vishay Siliconix

300MC TrenchFET® PROCESS TECHNOLOGY						
Sample size	26 404					
Equivalent device hours	3 449 960 047					
Failure rate in FIT	0.264					

Failure rate in FIT is calculated according to JEDEC® standard JESD85, Methods for calculating failure rates in units of FITs, based on accelerated high temperature operating life test results by using an apparent activation energy of 0.7 eV. The junction temperature of the device at use is assumed to be 55 °C. A constant failure rate distribution is assumed. The upper confidence bound of the failure rate is 60 %.

ENVIRONMENTAL AND PACKAGE TESTING DATA FOR POWERPAK® SO-8L										
STRESS	SAMPLE SIZE	DEVICE HR./CYC	CONDITION	TOTAL FAILS	FAIL PERCENTAGE					
Bond int.	520	270 000	200 °C, N2	0	0.00					
HAST	1394	155 800	130 °C, 85 % RH	0	0.00					
Pressure pot	1886	236 160	121 °C, 15 PSIG	0	0.00					
Temp. cycle	1968	2 501 000	-55 °C to +150 °C	0	0.00					
Solderability	255	2 040	8 hours	0	0.00					
Power cycle	1066	18 368 000	ΔT _J = 100 °C	0	0.00					
Solder dunk	1099	3 297	260 °C, 10 s	0	0.00					

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.