
$V_{CES} = 1200V$ $I_{C(Nominal)} = 100A$ $T_{J(max)} = 175^{\circ}C$ $V_{CE(on)} typ = 1.9V @ I_{C} = 100A$

Applications

- Medium Power Drives
- UPS
- HEV Inverter
- Welding

INSULATED GATE BIPOLAR TRANSISTOR

G	С	E	
Gate	Collector	Emitter	

Features -	→ Benefits			
Low V _{CE(ON)} and switching Losses	High efficiency in a wide range of applications			
Low V _{CE(ON)} and switching Losses	and switching frequencies			
Square RBSOA and Maximum Junction Temperature 175°C	Improved Reliability due to rugged hard switching			
Square RBSOA and Maximum Sunction Temperature 175 C	performance and higher power capability			
Positive V _{CE (ON)} Temperature Coefficient	Excellent current sharing in parallel operation			
Integrated Gate Resistor	Easier Paralleling with Integrated Gate Resistor			

Base part number	Package Type	Standard Pack		Orderable part number
		Form	Quantity	
IRG7CH75K10EF-R	Die on Film	Wafer	1	IRG7CH75K10EF-R

Mechanical Parameter

Die Size	10.4 x 10.4 mm			
Minimum Street Width	75	μm		
Emiter Pad Size (Included Gate Pad)	See Die Drawing	mm ²		
Gate Pad Size	1.00 x 1.717			
Area Total / Active	108.6 / 81.32			
Thickness	140	μm		
Wafer Size	200	mm		
Notch Position	0	Degrees		
Maximum-Possible Chips per Wafer	240 pcs.			
Passivation Front side	Silicon Nitride			
Front Metal	Al, Si (4µm)			
Backside Metal	Al (0.1μm), Ti (0.1μm), Ni (0.4μm), Ag (0.3μm)			
Die Bond	Electrically conductive epoxy or solder			
Reject Ink Dot Size	0.25 mm diameter minimum			

Maximum Ratings

	Parameter	Max.	Units
V _{CE}	Collector-Emitter Voltage, TJ=25°C	1200	V
lc	DC Collector Current	0	А
I _{LM}	Clamped Inductive Load Current ④	400	А
V _{GE}	Gate Emitter Voltage	± 30	V
T _J , T _{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

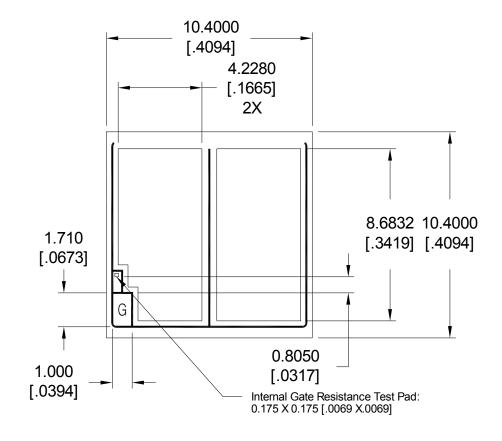
Static Characteristics (Tested on wafers) @ T_J=25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			V	V _{GE} = 0V, I _C = 250μA
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.25	1.53		V _{GE} = 15V, I _C = 20A, T _J = 25°C
V _{GE(th)}	Gate-Emitter Threshold Voltage	5.0		7.5		$I_{C} = 5.0 \text{mA}$, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	25	μA	V _{CE} = 1200V, V _{GE} = 0V
I _{GES}	Gate Emitter Leakage Current			±400	nA	$V_{CE} = 0V, V_{GE} = \pm 30V$
R _{G INTERNAL}	Internal Gate Resistance	2.0	2.5	3.0	Ω	

Electrical Characteristics (Not subject to production test-verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.9	2.3	V	V_{GE} = 15V, I _C = 100A , T _J = 25°C (5)
			2.5			V_{GE} = 15V, I_C = 100A , T_J = 175°C
SCSOA	Short Circuit Safe Operating Area	10				V _{GE} = 15V, V _{CC} = 600V ②
						R _G = 5.0Ω, V _P ≤ 1200V,T _J ≤150°C
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE			T _J = 175°C, I _C = 400A	
						V _{CC} = 960V, Vp ≤ 1200V
						Rg = 5.0 Ω , V _{GE} = +20V to 0V
C _{iss}	Input Capacitance		10850		pF	V _{GE} = 0V
C _{oss}	Output Capacitance		450			V _{CE} = 30V
C _{rss}	Reverse Transfer Capacitance		270			f = 1.0MHz
Q _g	Total Gate Charge (turn-on)		500	_	nC	I _C = 100A ⑥
Q _{ge}	Gate-to-Emitter Charge (turn-on)	_	120	_		V _{GE} = 15V
Q _{gc}	Gate-to-Collector Charge (turn-on)	—	240	_		$V_{CC} = 600V$

Switching Characteristics (Inductive Load-Not subject to production test-verified by design/characterization)


	Parameter	Min.	Тур.	Max.	Units	Conditions ③
t _{d(on)}	Turn-On delay time	—	120			I _C = 100A, V _{CC} = 600V
t _r	Rise time	—	105	_		R _G = 5.0Ω, V _{GE} =15V, L=200μH
t _{d(off)}	Turn-Off delay time		445			T _J = 25°C
t _f	Fall time	—	70			
t _{d(on)}	Turn-On delay time	—	115		ns	I _C = 100A, V _{CC} = 600V
t _r	Rise time		110			R _G = 5.0Ω, V _{GE} =15V, L= 100μH
t _{d(off)}	Turn-Off delay time	—	540]	T _J = 175°C
t _f	Fall time	_	120			

Notes:

- \odot The current in the application is limited by T_{JMax} and the thermal properties of the assembly.
- ② Not subject to production test- Verified by design / characterization.
- ③ Values influenced by parasitic L and C in measurement.
- (4) $V_{CC} = 80\%$ (V_{CES}), $V_{GE} = 20V$, L = 190µH, R_G = 5.1Ω.
- ⑤ Die level characterization.
- © Pulse width \leq 400µs; duty cycle \leq 2%.

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIE WIDTH AND LENGTH TOLERANCE: -0.0508 [.002]
- 4. DIE THICKNESS = 0.140 [.0055]

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit <u>http://www.irf.com/whoto-call/</u>