

RF POWER MOSFET N-CHANNEL ENHANCEMENT MODE

The ARF1501 is an RF power transistor designed for very high power scientific, commercial, medical and industrial RF power generator and amplifier applications up to 40 MHz.

- Specified 250 Volt, 27.12 MHz Characteristics:
 - Output Power = 750 Watts.

Gain = 17dB (Class C)

Efficiency > 75%

- High Performance Power RF Package.
- Very High Breakdown for Improved Ruggedness.
- Low Thermal Resistance.
- Nitride Passivated Die for Improved Reliability.

All Patings: T - 25°C unless otherwise specified

MAXIMUM RATINGS

MAXIMU	All Rauliys. I _C	All Ratings. $T_{C} = 25$ C unless otherwise specified				
Symbol	Parameter	ARF1501	UNIT			
V _{DSS}	Drain-Source Voltage	1000	Volts			
I _D	Continuous Drain Current @ T _C = 25°C	30	Amps			
V _{GS}	Gate-Source Voltage	±30	Volts			
P _D	Total Device Dissipation @ T_{C} = 25°C	1500	Watts			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 175	°C			
TL	Lead Temperature: 0.063" from Case for 10 Sec.	300				

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	MAX	UNIT	
BV _{DSS}	Drain-Source Breakdown Voltage (V_{GS} = 0V, I_{D} = 250 µA)	1000			Volta	
V _{DS(ON)}	On State Drain Voltage ⁽¹⁾ ($I_{D(ON)}$ = 15A, V_{GS} = 10V)		7.5	9	9 Volts	
1	Zero Gate Voltage Drain Current (V _{DS} = 1000V, V _{GS} = 0V)			40		
'DSS	Zero Gate Voltage Drain Current (V_{DS} = 800V, V_{GS} = 0V, T_{C} = 125°C)			1000	μA	
I _{GSS}	SS Gate-Source Leakage Current ($V_{GS} = \pm 30V, V_{DS} = 0V$) ± 4		±400	nA		
9 _{fs}	Forward Transconductance (V _{DS} = 25V, I _D = 15A)	5.5	7		mhos	
V _{isolation}	RMS Voltage (60Hz Sinewave from terminals to mounting surface for 1 minute)	TBD			Volts	
V _{GS(TH)}	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 50$ mA)	3		5	Volts	

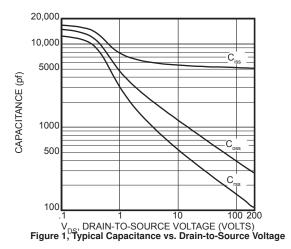
THERMAL CHARACTERISTICS

Symbol	Characteristic (per package unless otherwise noted)		ТҮР	MAX	UNIT
R _{øJC}	Junction to Case			0.10	°C/W
R _{ejhs}	Junction to Sink (Use High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.)		0.16		0/11

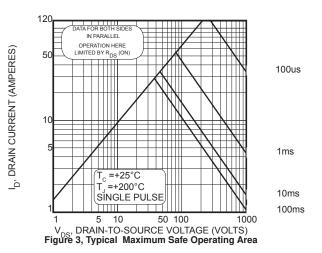
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

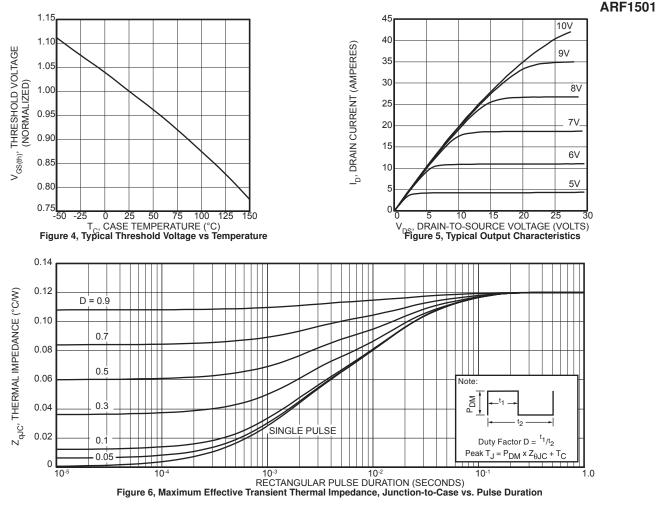
DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	ТҮР	МАХ	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		5400	6500	
C _{oss}	Output Capacitance	$V_{\rm DS} = 200V$		300	400	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		125	160	
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		8		
t _r	Rise Time	V _{DD} = 500V		5		ns
t _{d(off)}	Turn-off Delay Time	I _D = I _{D[Cont.]} @ 25°C R _G = 1.6 Ω		25		115
t _f	Fall Time	R _G = 1.6 Ω		13		


FUNCTIONAL CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	ТҮР	MAX	UNIT
G _{PS}	Common Source Amplifier Power Gain	f = 27.12 MHz	15	17		dB
η	Drain Efficiency	V _{GS} = 0V V _{DD} = 250V	70	75		%
Ψ	Electrical Ruggedness VSWR 10:1	P _{out} = 750W	No Degradation in Output Pow			t Power


¹ Pulse Test: Pulse width < 380 μ S, Duty Cycle < 2%.

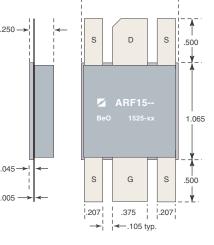

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Per transistor section unless otherwise specified.

60 V_{DS}> I_D(ON) x R_{DS(ON)} MAX. 250µSEC. PULSE TEST ID, DRAIN CURRENT (AMPERES) 50 @ <0.5 % DUTY CYCLE T_J = -55°C 40 30 20 T_ = +25°C 10 T_ = 125 10 12 14 0 2 4 6 8 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 2, Typical Transfer Characteristics

F (MHz)	Z _{in} (Ω)	Z _{OL} (Ω)
2.0	10.6 -j 12.2	31 -j 4.7
13.5	0.5 -j 2.7	15.6 -j 16
27	0.22 -j 0.8	6.2 -j 12.6
40	0.2 +j .12	3.1 -j 9.4

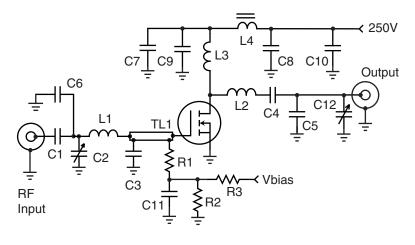
 $\begin{array}{l} Z_{in} \text{ - Gate shunted with } 25\Omega \ \text{I}_{DQ} = 100\text{mA} \\ Z_{\text{OL}} \text{ - Conjugate of optimum load for 750 Watts} \\ \text{output at } V_{dd} = 250\text{V} \end{array}$


Thermal Considerations and Package Mounting:

The rated 1500W power dissipation is only available when the package mounting surface is at 25°C and the junction temperature is 200°C. The thermal resistance between junctions and case mounting surface is 0.12°C/W. When installed, an additional thermal impedance of 0.1°C/W between the package base and the mounting surface is typical. Insure that the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. The heatsink should incorporate a copper heat spreader to obtain best results.

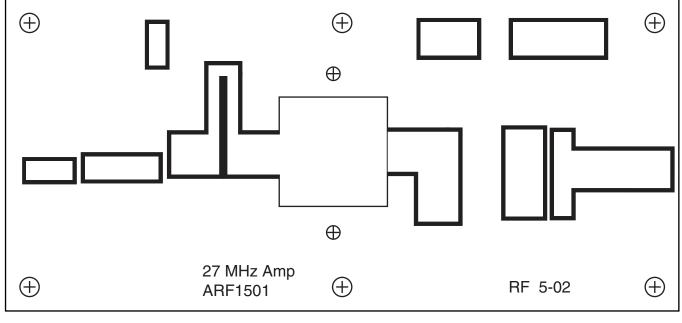
The package is designed to be clamped to a heatsink. A clamped joint maintains the required mounting pressure while allowing for thermal expansion of both the device and the heat sink. A simple clamp, and two 6-32 (M3.5) screws can provide the minimum 125lb required mounting force. T = 12 in-lb.

Heat Sink



HAZARDOUS MATERIAL WARNING The ceramic portion of the device between

leads and mounting surface is beryllium oxide, BeO. Beryllium oxide dust is toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area These devices must never be thrown away with general industrial or domestic waste.


ARF1501 -- 27.12 MHz Test Circuit

C1, C7,C8, C11 .1uF 250V ceramic chip C2, C12 ARCO 465 75-380pF mica trimmer C3 4700pF ATC700B C4, C9-C11 8200pF 500V NPO ceramic C5 - C6 150pF ATC 700B L1 90 nH 4t #18 0.25"d .25"l L2 175 nH - 3t #10 .75" dia .75" l L3 2uH - 22t #24 enam. .312" dia. L4 500nH 2t on 850u .5" bead R1-R3 1k Ω 1/4W TL1 .112" x 1.2" (50 Ω) Stripline

Parts placement

