Type JAG

Type JAG micro fuse is designed for circuit protection against excessive current in portable electronic equipment, electric circuit around battery, etc. because the demand for high capacity batteries is increasing.

Wire material is adopted for fuse element, and the performance against rush current is increased in spite of compact design. Also, the ecology design of Type JAG is environmentally friendly because of complete lead-free.

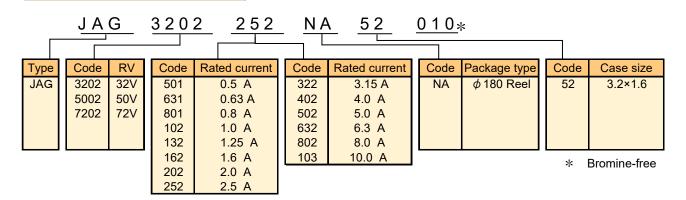
FEATURES

- 1. Our original construction design has excellent fusing and cutting characteristics.
- 2. Especially, performance against rush current is excellent since wire material is used for fuse element.
- 3. Surface temperature rise is 75°C or less when applying rated current for fusing. This gives less influence to the peripheral units.
- 4. Resistance to soldering heat: Reflow or flow soldering 10 seconds at 260 °C
- 5. Our original terminal construction makes almost no occurrence of Tombstone phenomenon.
- 6. Small size of 3216 (3.2×1.6×1.6 mm)
- 7. Suitable for automatic mounting
- 8. Precise dimensions allows high-density mounting and symmetrical construction of terminals provide "Self-Alignment".
- 9. Complete lead-free, bromine-free.

APPLICATION CLASSIFICATION BY USE

The application classification by use which divided the market and use into four is set up supposing our products being used for a broad use.

Please confirm the application classification by use of each product that you intend to use.

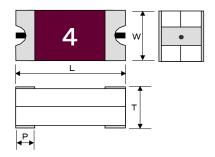

Moreover, please be sure to inform to our Sales Department in advance in examination of the use of those other than the indicated use.

	Application	l	Jse	·			
Market	classification by use	Outline	Typical example of application	Circuit Protection Components			
High reliability apparatus	1	 Apparatus in which advanced safety and reliability are demanded. Whether failure of the apparatus which cannot maintenance exchange products, and a product is direct for a human life, apparatus which changes or may cause a fatal system failure. 	- Space development apparatus relation (Satellite, Rocket, Artificial Satellite) - Aviation and a defensive system - Atomic power, fire power, and a water-power generation system	With no relevance			
In-vehicle	2	 Apparatus in which reliability is important. The apparatus in which maintenance exchange of a product is very difficult, and failure of a product influence a human life, or the range of failure is wide range. 	- Vehicles control of transport machines, such as a car, and a railroad, a vessel (Engine control, drive control, brake control) - The operation control system of the Shinkansen and a main artery	Type KAB N series Type JAG N series Type KVA N series			
Industrial apparatus	3	-Apparatus which can maintenance exchange products, and apparatus in which the loss of the system failure is large although failure of a product does not influence a human life, and maintenance engineering is demanded	Vehicle indoor loading parts, such as an air-conditioner and car navigation, and in-vehicle communication facility Security management system for home/buildings etc. Control apparatus, such as Industrial use robots and a machine tool etc.	Type KAB M series			
Apparatus in general	4	The small size and the thin article which applies leading-edge technology positively The product supposing being used widely in the market for the apparatus which can maintenance exchange products, and apparatus with a partial system failure by failure of product	-Smart phone, Mobile phone, Mobile PC (tablet), Electronic dictionary - Desktop PC, Notebook PC, Home network - Amusement apparatus (Pachinko,Game machine)	Type KAB Type KAB T series Type KAH Type JAE, Type JAG Type JAH, Type JAH L series Type JAJ, Type JAK Type JHC Type KVA			

RATING

Item	Rating
Category Temperature Range	- 40 ~ +125℃
Rated Current	0.5-0.63-0.8-1.0-1.25-1.6-2.0-2.5-3.15-4.0-5.0-6.3-8.0-10.0A
Rated Voltage	32VDC、50VDC、72VDC
Voltage Drop	Refer to CATALOG NUMBERS AND RATING
Insulation Resistance (between terminals and case)	1000 MΩ or more
Fusing Characteristics	Fusing within 1 minute if the current is 200% of rated current.
Clearing Characteristics	Breaking voltage : 32 V、50 V、72 V
Cleaning Characteristics	Breaking current : 50 A

ORDERING INFORMATION

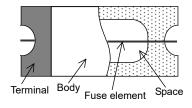

CATALOG NUMBERS AND RATING

Aug., 2021

Catalog number	Case size	Rated current A	Internal resistance mΩ (Typical)	Voltage drop mV (Max.)	Rated voltage VDC	Breaking current A
JAG 3202 501 □ □ 52010	3.2×1.6	0.5	310	280		
JAG 3202 631 □□52010	3.2×1.6	0.63	240	240		
JAG 3202 801 □ □ 52010	3.2×1.6	0.8	190	200		
JAG 3202 102 □ □ 52010	3.2×1.6	1.0	145	200		
JAG 3202 132 □ □ 52010	3.2×1.6	1.25	118	200		
JAG 3202 162 □ □ 52010	3.2×1.6	1.6	93	200		
JAG 3202 202 □ □ 52010	3.2×1.6	2.0	70	200	32	
JAG 3202 252 □ □ 52010	3.2×1.6	2.5	54	200	02	
JAG 3202 322 □ □ 52010	3.2×1.6	3.15	43	200		
JAG 3202 402 □ □ 52010	3.2×1.6	4.0	34	200		50
JAG 3202 502 □ □ 52010	3.2×1.6	5.0	11.6	200		
JAG 3202 632 □ □ 52010	3.2×1.6	6.3	9.16	200		
JAG 3202 802 □ □ 52010	3.2×1.6	8.0	7.17	200		
JAG 3202 103 □ □ 52010	3.2×1.6	10.0	6.27	200		
JAG 5002 502 □ □ 52010	3.2×1.6	5.0	11.6	200		
JAG 5002 632 □ □ 52010	3.2×1.6	6.3	9.16	200	50	
JAG 5002 802 □ □ 52010	3.2×1.6	8.0	7.17	200		
JAG 5002 103 □ □ 52010	3.2×1.6	10.0	6.27	200		
JAG 7202 631 □ □52010	3.2×1.6	0.63	240	240		
JAG 7202 801 □ □52010	3.2×1.6	0.8	190	200		
JAG 7202 102 □ □52010	3.2×1.6	1.0	145	200		
JAG 7202 132 □ □52010	3.2×1.6	1.25	118	200		
JAG 7202 162 □ □ 52010	3.2×1.6	1.6	93	200	72	
JAG 7202 202 □ □ 52010	3.2×1.6	2.0	70	200		
JAG 7202 252 □ □ 52010	3.2×1.6	2.5	54	200		
JAG 7202 322 □ □52010	3.2×1.6	3.15	43	200		
JAG 7202 402 □ □52010	3.2×1.6	4.0	34	200		

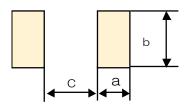
For the taping type, the packing code "NA" will be entered in $\Box\Box$. Catalog numbers are approved by UL and cUL. (File No.E170721)

DIMENSIONS

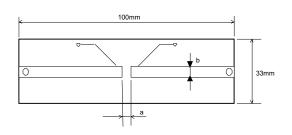

Main body : Glass epoxy Terminal : Tin plating

Terminar: Till plating (IIIII)								
Case size	Case code	Ш	W	Т	Р			
3216	52	3.2 ^{± 0.2}	1.6 ^{± 0.2}	1.4 ^{± 0.2}	0.6 ^{± 0.2}			

MARKING


Code	:	Rated current	Code	:	Rated current	Code	:	Rated current
Т	:	0.50A	Х	:	1.60A	5	:	5.0A
U	:	0.63A	2	:	2.00A	6	:	6.3A
V	:	0.80A	Υ	:	2.50A	8	:	8.0A
1	:	1.00A	3	:	3.15A	10	:	10.0A
W	:	1.25A	4	:	4.00A			

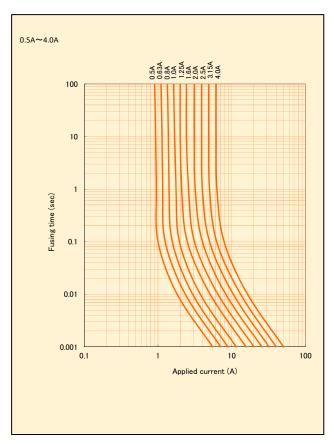
CONSTRUCTION

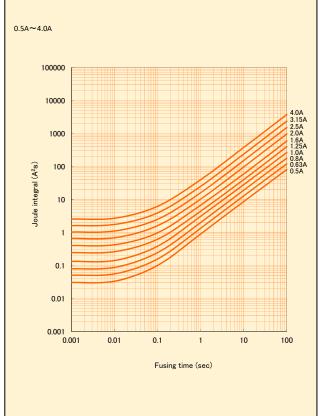

Name	Material, standard, and treatment
Fuse element	Lead-free alloy
Space	
Terminal	Tin plating
Body	Glass epoxy

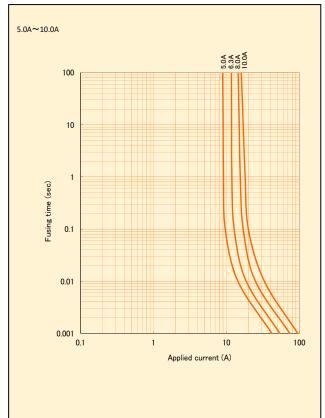
RECOMMENDED PAD DIMENSIONS

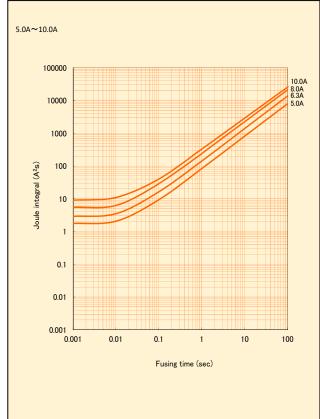
	(mm)			
	Size 3216			
а	1.0			
b	1.6			
С	1.6			
(Reflow)				

STANDARD TEST BODY

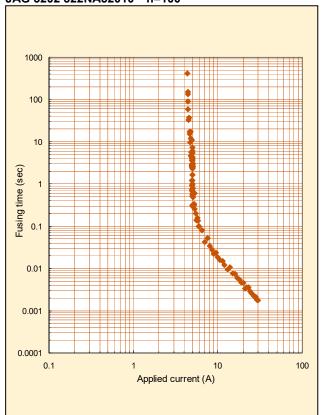

Glass epoxy body on one side Board thickness : 1.6 mm

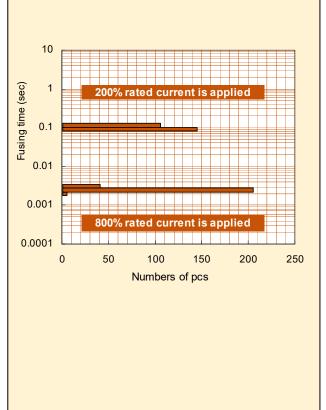

	Less than 5A	More than 5A
а	1.5mm	1.4mm
b	5mm	10mm
Copper layer	35µm	70µm


PERFORMANCE


No.	Item	Performance	Test method
1	Temperature rise	Temperature rise shall not exceed 75°C.	Apply rated current.
2	Current-carrying capacity	Shall not open within 1 hour.	Apply 100% of rated current.
3	Clearing characteristics	Arc shall not be continued. Marking shall be legible.	Breaking voltage : Rated Voltage Breaking current : 50 A
4	Voltage drop	Voltage drop is below the value specified in CATALOG NUMBERS AND RATING.	Apply rated current.
5	Fusing characteristics	Fusing within 1 min.	Apply 200% of rated current. (Ambient temperature : 10 ~ 30°C)
6	Insulation resistance	1000 MΩ or more	Insulation resistance between terminals and case
7	Electrode strength (Bending)	No mechanical damage. Resistance change after the test shall be within $\pm20\%$.	Board supporting width : 90 mm Bending speed : Approx. 0.5 mm/sec. Duration : 5 sec. Bending : 3 mm
8	Shear test	No mechanical damage. Resistance change after the test shall be within \pm 20%.	Applied force : 20 N Duration : 10 sec. Tool : R0.5 Direction of the press : side face
9	Substrate bending test	No mechanical damage. Resistance change after the test shall be within \pm 20%.	Supporting dimension : 1.6 mm Applied force : 20 N Duration : 10 sec. Tool : R0.5 Direction of the press : thickness direction of product
10	Solderability (Solder Wetting time)	Solder Wetting time : within 3sec.	Solder: Sn-3Ag-0.5Cu Temperature: 245 ± 3°C meniscograph method Solder: JISZ3282 H60A, H60S, H63A Temperature: 230 ± 2°C meniscograph method
11	Solderability (new uniform coating of solder)	The dipping surface of the terminals shall be covered more than 95% with new solder.	Solder: Sn-3Ag-0.5Cu Temperature: 245 ± 3°C Dipping: 3 sec. Solder: JISZ3282 H60A, H60S, H63A Temperature: 230 ± 2°C Dipping: 3 sec.
12	Resistance to soldering heat	Marking shall be legible. No mechanical damage. Resistance change after the test shall be within \pm 20%.	Dipping (1 cycle) Preconditioning: 100 ~ 150°C, 30±5 sec. Temperature: 260 ± 3°C, 5½ sec. Reflow soldering (2 cycles) Preconditioning: 150~180°C, 90±30 sec. Peak: 250½°C Holding: 230°C or higher, 30±10 sec. Cooling: 3 ~ 6°C/sec or faster Manual soldering Temperature: 350 ± 10°C Duration: 2 ~ 3 sec Measure after 1 hour left under room temperature and humidity.
13	Solvent resistance	Marking shall be legible. No mechanical damage. No significant irregularity in the appearance.	Dipping rinse Solvent : Isopropyl alcohol Duration : 90 sec.
14	Vibration	No mechanical damage. Resistance change after the test shall be within $\pm20\%$.	Frequency range : 10 ~ 55 ~ 10 Hz/min Vibration amplitude : 1.5 mm Duration : 2 hours in each of XYZ directions (total : 6 hours)
15	Shock	No mechanical damage. Resistance change after the test shall be within \pm 20%.	Peak value : 490 m/s ² Duration : 11 m sec. 6 aspects × 3 times (total : 18 times)
16	Thermal shock	No mechanical damage. Resistance change after the test shall be within $\pm20\%$.	$-55 \pm 3^{\circ}\text{C}$: 30 min. Room temperature : 2 ~ 3 min or less 125 $\pm 2^{\circ}\text{C}$: 30 min. Room temperature : 2 ~ 3 min or less Repeat above step for 10 cycles
17	Moisture resistance	No mechanical damage. Resistance change after the test shall be within \pm 20%.	Temperature : 85 \pm 3°C Humidity : 85 \pm 5% RH Duration : 1000 hours
18	Load life	No mechanical damage. Resistance change after the test shall be within \pm 20%.	Temperature : 85 \pm 2°C Applied current : Rated current \times 70% Duration : 1000 hours
19	Moisture resistance load	No mechanical damage. Resistance change after the test shall be within \pm 20%.	Temperature : 85 \pm 2°C Humidity : 85 \pm 5% RH Applied voltage : rated current \times 70% Duration : 1000 h
20	Stability	No mechanical damage. Resistance change after the test shall be within $\pm~20\%$.	Temperature : 125 ± 2°C Duration : 1000 hours

I²T-T CHARACTERISTICS




DISTRIBUTION OF FUSING CHARACTERISTICS

DISTRIBUTION OF FUSING TIME

JAG 3202 322NA52010

DETERMINATION OF RATED VALUE AND SELECTION OF MICRO FUSE (TYPE JAG)

Determine the rated value of the micro fuse, and select the correct circuit protection element for your circuit. If you select the correct circuit protection element, safety of your circuit can be ensured.

How to determine the rated value of the circuit protection element is described below:

■Flow for fuse selection

1. Measurement of circuit values using actual device

Measure the circuit values, such as operating current of the circuit.

2. Calculation from operating current

From the obtained operating current and the category temperature, calculate the minimum rated value to determine the applicable fuse.

3. Calculation from overload current

From the obtained overload current, calculate the maximum rated value to determine the applicable fuse.

4. Calculation from inrush current

From the inrush current, calculate the minimum rated value to determine the applicable fuse.

5. Final determination of rated value

From the calculation results of steps 2 through 4, determine the rated value.

6. Operation check using actual device

After selecting the rating, confirm if the device works properly under the pre-determined conditions.

■Fuse selection

1. Measurement of circuit values using actual device

Before determining the rated value of the fuse, preliminarily measure the following using the actual device.

1-1 Operating current

Using an oscilloscope or equivalents, measure the operating current of the circuit.

1-2 Overload current

Using an oscilloscope or equivalents, measure the overload current that needs to break the circuit.

1-3 Inrush current

Using an oscilloscope or equivalents, measure the inrush current of the circuit at power-on or power-off. In addition, determine the number of inrush current applied.

1-4 Category temperature

Measure the ambient temperature of the fuse circuit.

EXAMPLE TO SELECT RATINGS OF TYPE JAE

<Fuse selection>

Effective operating current : 1.2 A

Effective overload current : 6.0 A

Inrush current waveform : Fig. A

(Pulse width : 1 ms, Wave height : 6.0 A)

Numbers to withstand inrush current: 100,000 times

Category temperature: 85°C

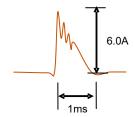


Fig. A: Inrush current waveform

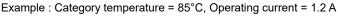
2. Calculation from operating current

2-1 Measurement of operating current

Using an oscilloscope or equivalents, measure operating current (effective current) of the actual circuit.

Example: Effective operating current = 1.2 A

2-2 Derating

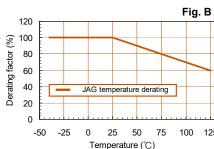

Temperature derating factor

Using Fig. B, find the temperature derating factor correspond to the temperature.

2Rated derating factor

Rated derating factor = 0.78 (Constant irrespective of temperature)

Use Formula 1 to calculate the rated current of the fuse to be used for the circuit. Rated current of fuse \geq Operating current/(1) × 2) ... Formula 1


①Temperature derating factor = 0.76 (Refer to Fig. B.)

②Rated derating factor = 0.78 (Constant irrespective of temperature)

Calculation using Formula 1:

Rated current ≥ 1.2/(0.76 × 0.78) = 2.02 A

The above calculation result shows that the fuse with rated current of 2.02 A or more should be selected for this circuit. Type JAG, with <u>rated current of 2.5 A or more</u> can be selected.

3. Calculation from overload current

3-1 Measurement of overload current

Using oscilloscope or equivalents, measure the overload current that needs to break the circuit.

Example: Effective overload current = 6.0 A

3-2 Calculation from overload current

Determine the rated current so that the overload current can be 2.0 times larger than the rated current.

Use Formula 2 to calculate the rated current of the fuse.

Rated current of fuse ≤ Overload current/2.0 ... Formula 2

Example: Overload current = 6.0 A

Use Formula 2 to calculate the rated current.

Rated current ≤ 6.0/2.0 = 3.0 A

The above calculation result shows that the fuse with rated current of 3.0 A or less should be selected for this circuit.

Type JAG, with rated current of 2.5 A or less can be selected.

4. Calculation from inrush current

4-1 Measurement of inrush current waveform

Using an oscilloscope or equivalent, measure the waveform of the inrush current of the actual circuit.

4-2 Creation of approximate waveform

Generally, the waveform of inrush current is complicated. For this reason, create the approximate waveform of inrush current as shown on Fig. C to simplify calculation.

4-3 Calculation of I2t of inrush current

Calculate I²t (Joule integral) of the approximate waveform.

The formula for this calculation depends on the approximate waveform.

Refer to Table A.

Example: Pulse applied = 1 ms, Peak value = 6.0 A

Approximate waveform = Triangular wave

Since the approximate waveform is a triangular wave, use the

following formula for calculation.

 $I^{2}t$ of rush current = $1/3 \times Im^{2} \times t$... Formula 3

(Im : Peak value, t : Pulse applying time)

Use Formula 3 to calculate I²t of the rush current:

 $I^2t = 1/3 \times 6 \times 6 \times 0.001 = 0.012$ (A²s)

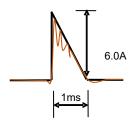


Fig. C: Inrush current waveform

Red line : Actual measurement waveform Black line : Approximate waveform

JOULE-INTEGRAL VALUES FOR EACH WAVEFORM

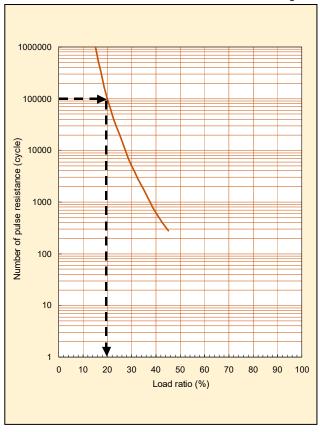
Table A

Name	Waveform	I²t	Name	Waveform	I²t
Sine wave (1 cycle)	0 1 m	$\frac{1}{2}$ I m ² t	Trapezoidal wave	O t ₁ t ₂ t ₃	$\frac{1}{3} \operatorname{Im}^{2} t_{1} + \operatorname{Im}^{2} (t_{2}-t_{1}) + \frac{1}{3} \operatorname{Im}^{2} (t_{3}-t_{2})$
Sine wave (half cycle)	O t I m	$\frac{1}{2}$ I m ² t	Various wave 1	O t	$I_{1}I_{2}t + \frac{1}{3}(I_{1}-I_{2})^{2}t$
Triangular wave	O t Im	$\frac{1}{3}$ I m ² t	Various wave 2	0 t ₁ t ₂ t ₃ I ,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rectangular wave	O t	I m² t	Charge/ discharge waveform	0.368 I m O T -t	$\frac{1}{2}$ I m ² t

*Following formula is generally used for calculation of I2t as i(t) equal to current.

$$I^2 t = \int_0^t i^2 (t) dt$$

4-4 Search of load ratio


- ①Set up the number of cycles to withstand. (generally 100.000 times)
- ②Obtain the load ratio from Pulse resistance characteristics. (Fig. D)

Example: 100,000 times is required against inrush current applied.

The load ratio is 20% or less from Fig. D.

PULSE RESISTANCE CHARACTERISTICS

Fig. D

4–5 Calculation from Joule integral and load ratio Use Formula 4 to calculate the standard I²t for the fuse to be used.

Standard I²t of fuse > (I²t of inrush current/load ratio) Formula 4

Example : I^2t of pulse = 0.012 A^2s ,

Pulse applied = 1 ms, Required load ratio = 20%

From Formula 4, Standard I²t of fuse > 0.012/0.2 = 0.06 (A²s)

The standard I²t of the fuse should be 0.06 (A²s) or more.

Since the rush pulse applied is 1 ms, obtain the intersection of 1 ms (horizontal axis) and 0.06 A^2 s (vertical axis) from Fig. E (refer to the arrow shown in Fig.E).

Select a fuse whose curve is above the intersection. Type JAG, with <u>rated current of 0.8 A or more</u> should be selected.

5. Final determination of rated value

Determine the rated current of the micro fuse. The rated current should meet all the calculation results.

Example: 2.5A meets the all requirement.

6. Operation check using actual device

After selecting the rating, confirm if the device works properly under the pre-determined conditions.

JOULE INTEGRAL VS. FUSING TIME

Application Notes for Micro Fuse

1. Circuit Design

Micro Fuse should be designated only after confirming operating conditions and Micro Fuse performance characteristics.

When determining the rated current, be sure to observe the following items:

- (1) Micro Fuse should always be operated below the rated current (the value considered in the temperature derating rate) and voltage specifications.
- (2) Micro Fuse should always be operated below the rated voltage.
- (3) Micro Fuse should be selected with correct rated value to be fused at overload current.
- (4) When Micro Fuse are used in inrush current applications, please confirm sufficiently inrush resistance of Micro Fuse.
- (5) Please do not apply the current exceeding the breaking current to Micro Fuse.
- (6) Use Micro Fuse under the condition of category temperature.
- (7) Micro Fuse should not be used in the primary power source.

Micro Fuse should be selected by determining the operating conditions that will occur after final assembly, or estimating potential abnormalities through cycle testing.

2. Assembly and Mounting

During the entire assembly process, observe Micro Fuse body temperature and the heating time specified in the performance table. In addition, observe the following items:

- (1) Mounting and adjusting with soldering irons are not recommended since temperature and time control is difficult.
 - In case of emergency for using soldering irons, be sure to observe the conditions specified in the performance table.
- (2) Micro Fuse body should not contact a soldering iron directly.
- (3) Once Micro Fuse mounted on the board, they should never be remounted on boards or substrates.
- (4) During mounting, be careful not to apply any excessive mechanical stresses to the Micro Fuse.

3 Solvents

For cleaning of Micro Fuse, immersion in isopropyl alcohol for 90 seconds (at $20 \sim 30^{\circ}$ C liquid temp.) will not be damaged. If organic solvents will be used to Micro Fuse, be sure to preliminarily check that the solvent will not damage Micro Fuse.

4. Ultrasonic Cleaning

Ultrasonic cleaning is not recommended for Micro Fuse. This may cause damage to Micro Fuse such as broken terminals which results in electrical characteristics effects, etc. depending on the conditions.

If Ultrasonic cleaning process must be used, please evaluate the effects sufficiently before use.

5. Caution During Usage

- (1) Micro Fuse with electricity should never be touched. Micro Fuse with electricity may cause burning due to Micro Fuse high temperature. Also, in case of touching Micro Fuse without electricity, please check the safety temperature of Micro Fuse.
- (2) Protective eyeglasses should always be worn when performing fusing tests. However, there is a fear that Micro Fuse will explode during test. During fusing tests, please cover particles not to fly outward from the board or testing fixture. Caution is necessary during usage at all times.

6. Environmental Conditions

- (1) Micro Fuse should not be stored or operated in the presence of acids, or alkalis, or corrosive atmosphere.
- (2) Micro Fuse should not be vibrated, shocked, or pressed excessively.
- (3) Micro Fuse should not be operated in a flammable or explosive atmosphere.
- (4) Please do not use Micro fuse in the environment where dew condensation occurs.

In case Micro fuse has to be used under the dew condensation condition, please apply moisture-proof coating over Micro fuse.

Covering Micro fuse with moisture-proof coating may affect electrical characteristics, please evaluate the effects sufficiently before use.

7. Emergency

In case of fire, smoking, or offensive odor during operation, please cut off the power in the circuit or pull the plug out.

8. Storage

- (1) Micro Fuse should not be stored in an environment with high temperature, low temperature, high humidity, condensation and dust and avoid direct sunlight or corrosive atmosphere such as H₂S(hydrogen sulfide) or SO₂(sulfur dioxide).
 - Direct sunlight may cause decolorization and deformation of the exterior and taping.
 - Also, solderability will be remarkably lower in high humidity.
- (2) If the products are stored for an extended period of time, please contact Matsuo Sales Department for recommendation. The longer storage term causes packages and tapings to worsen. If the products will be stored for longer term, please contact us for advice.
- (3) The products in taping, package, or box should not be given any kind of physical pressure. Deformation of taping or package may affect automatic mounting.

9. Disposal

When Micro Fuse are disposed of as waste or "scrap", they should be treated as "industrial waste". Micro Fuse contain various kinds of metals and resins.

10. Samples

Micro Fuse received as samples should not be used in any products or devices in the market. Samples are provided for a particular purpose such as configuration, confirmation of electrical characteristics, etc.

MATSUO ELECTRIC CO., LTD.

Please feel free to ask our Sales Department for more information on Micro Fuse.

 Overseas Sales
 5-3,3-Chome,Sennari-cho,Toyonaka-shi,Osaka 561-8558,Japan Tel:06-6332-0883
 Fax:06-6332-0920

 Head office
 5-3,3-Chome,Sennari-cho,Toyonaka-shi,Osaka 561-8558,Japan Tel:06-6332-0871
 Fax:06-6331-1386

URL https://www.ncc-matsuo.co.jp/

Specifications on this catalog are subject to change without prior notice. Please inquire of our Sales Department to confirm specifications prior to use.