

part numbers).

Schottky Barrier Diode MELF Surface Mount

Qualified per MIL-PRF-19500/444 DESCRIPTION

This Schottky barrier diode is metallurgically bonded and offers military grade qualifications for high-reliability applications. This small diode is hermetically sealed and bonded into a DO-213AA glass package. Also included in this datasheet are Microsemi's CDLL numbered variants of this series (military qualification grades not are not available for the CDLL prefix

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of JEDEC registered 1N5711, 1N5712, 1N6857, and 1N6858 numbers.
- Hermetically sealed glass construction.
- Metallurgically bonded.
- Double plug construction.
- JAN, JANTX, JANTXV and commercial qualifications also available per MIL-PRF-19500/444 on "1N" numbers only.

(See Part Nomenclature for all available options).

• RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Low reverse leakage characteristics.
- Small size for high density mounting using the surface mount method (see package illustration).
- ESD sensitive to Class 1.

MAXIMUM RATINGS @ 25 °C unless otherwise stated

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	$T_{\rm J}$ and $T_{\rm STG}$	-65 to +150	°C
Thermal Resistance, Junction-to-End Cap	R _{OJEC}	250	ºC/W
Average Rectified Output Current:			
5711 & 6263 types ⁽¹⁾ 2810, 5712 & 6858 types ⁽²⁾	lo	33	mA
2810, 5712 & 6858 types ⁽²⁾		75	
6857 types ⁽³⁾		150	
Solder Temperature @ 10 s		260	°C

NOTES: 1. At T_{EC} and T_{SP} = +140 °C, derate I_O to 0 at +150 °C.

- 2. At T_{EC} and T_{SP} = +130 °C, derate I_O to 0 at +150 °C.
- 3. At T_{EC} and T_{SP} = +110°C, derate I_O to 0 at +150 °C.

<u>Qualified Levels</u>: JAN, JANTX, and JANTXV

DO-213AA (MELF) Package

Also available in:

(3-pin surface mount) 1N5711UB, 1N5712UB (B, CC, CA)

DO-35 package (axial-leaded) <u>1N5711-1, 1N5712-1,</u> <u>1N6857-1, and 1N6858-1</u>

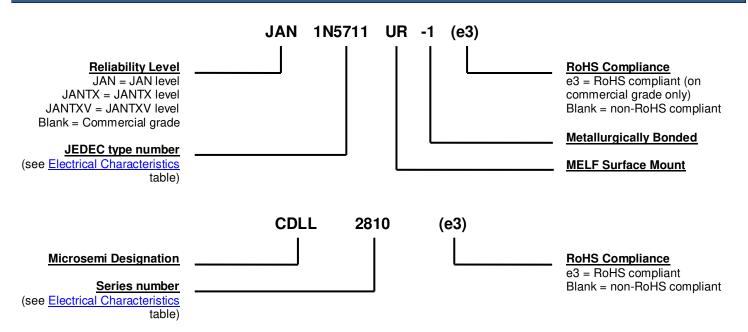
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

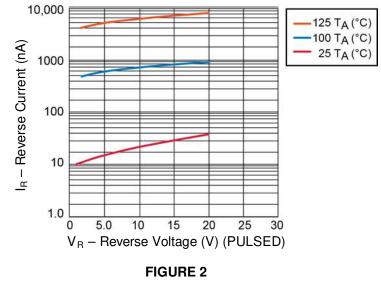
- CASE: Hermetically sealed glass DO-213AA MELF (SOD-80, LL34) case package.
- TERMINALS: Tin/lead plated or RoHS compliant matte-tin (on commercial grade only) over copper clad steel. Solderable per MIL-STD-750, method 2026.
- POLARITY: Cathode end is banded.
- MOUNTING: The axial coefficient of expansion (COE) of this device is approximately +6PPM/°C. The COE of the mounting
 surface system should be selected to provide a suitable match with this device.
- MARKING: Part number.
- TAPE & REEL option: Standard per EIA-296. Consult factory for quantities.
- WEIGHT: Approximately 0.2 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

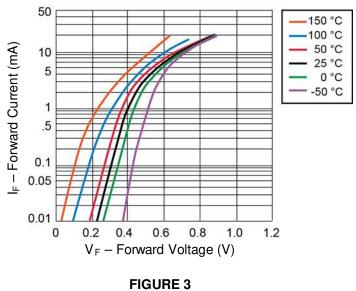
SYMBOLS & DEFINITIONS				
Symbol	Definition			
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.			
f	frequency			
I _R	Reverse Current: The dc current flowing from the external circuit into the cathode terminal at the specified voltage V _R			
Ιo	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.			
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.			
V _(BR)	Breakdown Voltage: A voltage in the breakdown region.			
VF	Forward Voltage: A positive dc anode-cathode voltage the device will exhibit at a specified forward current.			
V _R	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.			
V _{RWM}	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.			

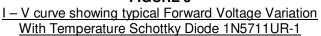
ELECTRICAL CHARACTERISTICS @ $T_A = 25 \ ^{\circ}C$ unless otherwise noted							
TYPE NUMBER	MINIMUM BREAKDOWN VOLTAGE	MAXIMUM FORWARD VOLTAGE	ORWARD FORWARD PEAK REVERSE		ERSE (AGE	$\label{eq:maximum} \begin{array}{l} \textbf{MAXIMUM} \\ \textbf{CAPACITANCE} \\ @ V_{R} = 0 \\ \textbf{VOLTS} \\ f = 1.0 \ \textbf{MHz} \end{array}$	
	V _(BR) @ 10 μA	V _F @ 1 mA	V _F @ I _F	V _{RWM}	I _R @	ØVR	Ст
	Volts	Volts	V @ mA	V (pk)	nA	Volts	pF
1N5711UR-1	70	0.41	1.0 @ 15	50	200	50	2.0
1N5712UR-1	20	0.41	1.0 @ 35	16	150	16	2.0
1N6857UR-1	20	0.35	0.75 @ 35	16	150	16	4.5
1N6858UR-1	70	0.36	0.65 @ 15	50	200	50	4.5
CDLL2810	20	0.41	1.0 @ 35	50	100	15	2.0
CDLL5711	70	0.41	1.0 @ 15	50	200	50	2.0
CDLL5712	20	0.41	1.0 @ 35	16	150	16	2.0
CDLL6263	60	0.41	1.0 @ 15	16	200	50	2.2
CDLL6857	20	0.35	0.75 @ 35	16	150	16	4.5
CDLL6858	70	0.36	0.65 @ 15	50	200	50	4.5

NOTE:


1. Effective minority carrier lifetime (τ) is 100 pico seconds.

GRAPHS


FIGURE 1 <u>I-V Curve showing typical Forward Voltage Variation</u> Temperature for the 1N5712UR-1, CDLL5712 and CDLL2810 Schottky Diodes



 $\frac{1N5712UR-1, \text{ CDLL5712 and CDLL2810 Typical variation of Reverse}}{\text{Current (I}_{R}) \text{ vs Reverse Voltage (V}_{R}) \text{ at Various Temperatures}}$

GRAPHS

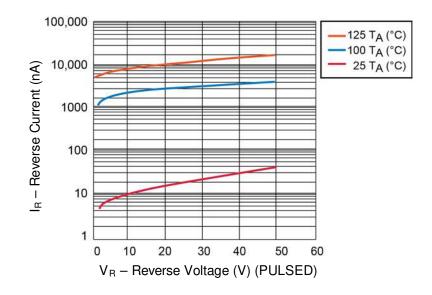


FIGURE 4 <u>1N5711UR-1 Typical Variation of Reverse Current (I_R) vs Reverse Voltage (V_R)</u> <u>at Various Temperatures</u>

GRAPHS

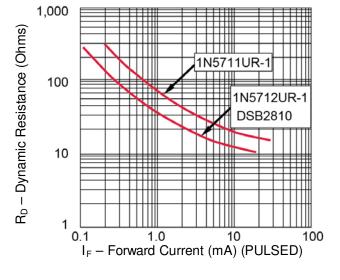
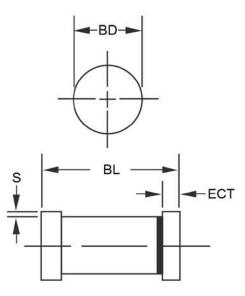
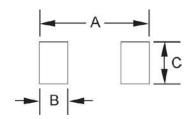



FIGURE 5 <u>Typical Dynamic Resistance (R_D) vs Forward Current (I_F)</u>

PACKAGE DIMENSIONS



DIM	INCH		MILLIMETERS		
	MIN	MAX	MIN	MAX	
BD	0.063	0.067	1.60	1.70	
BL	0.130	0.146	3.30	3.71	
ECT	0.016	0.022	0.41	0.56	
S	0.001 min		0.03 min		

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. Dimensions are pre-solder dip.
- 3. Referencing to dimension S, minimum clearance of glass body to mounting surface on all orientations.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

PAD LAYOUT

	INCH	mm
Α	0.200	5.08
В	0.055	1.40
С	0.080	2.03