

Instruments

LM1117

SNOS412N-FEBRUARY 2000-REVISED JANUARY 2016

LM1117 800-mA Low-Dropout Linear Regulator

Features

- Available in 1.8 V, 2.5 V, 3.3 V, 5 V, and Adjustable Versions
- Space-Saving SOT-223 and WSON Packages
- Current Limiting and Thermal Protection
- Output Current 800 mA
- Line Regulation 0.2% (Maximum)
- Load Regulation 0.4% (Maximum)
- Temperature Range
 - LM1117: 0°C to 125°C
 - LM1117I: -40°C to 125°C

Applications

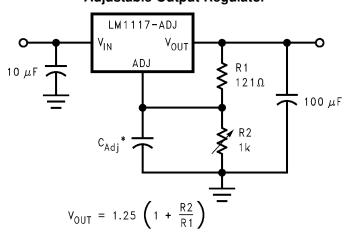
- Post Regulator for Switching DC–DC Converter
- High Efficiency Linear Regulators
- **Battery Chargers**
- Portable Instrumentation
- Active SCSI Termination Regulator

3 Description

The LM1117 is a low dropout voltage regulator with a dropout of 1.2 V at 800 mA of load current.

The LM1117 is available in an adjustable version, which can set the output voltage from 1.25 to 13.8 V with only two external resistors. In addition, it is available in five fixed voltages, 1.8 V, 2.5 V, 3.3 V, and 5 V.

The LM1117 offers current limiting and thermal shutdown. Its circuit includes a Zener trimmed bandgap reference to assure output voltage accuracy to within ±1%.


A minimum of 10-µF tantalum capacitor is required at the output to improve the transient response and

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SOT-223 (4)	6.50 mm × 3.50 mm
	TO-220 (3)	14.986 mm × 10.16 mm
LM1117, I M1117I	TO-252 (3)	6.58 mm × 6.10 mm
LIVITITI	WSON (8)	4.00 mm × 4.00 mm
	TO-263 (3)	10.18 mm × 8.41 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Adjustable Output Regulator

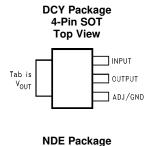
^{*}C_{Adi} is optional, however it will improve ripple rejection.

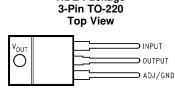
Table of Contents

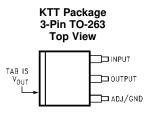
1	Features 1		7.3 Feature Description	
2	Applications 1		7.4 Device Functional Modes	
3	Description 1	8	Application and Implementation	14
4	Revision History2		8.1 Application Information	14
5	Pin Configuration and Functions3		8.2 Typical Application	14
6	Specifications4		8.3 System Examples	16
U	6.1 Absolute Maximum Ratings	9	Power Supply Recommendations	17
	6.2 ESD Ratings	10	Layout	
	6.3 Recommended Operating Conditions		10.1 Layout Guidelines	
	6.4 Thermal Information		10.2 Layout Example	
	6.5 LM1117 Electrical Characteristics	11		
	6.6 LM1117I Electrical Characteristics		11.1 Community Resources	
	6.7 Typical Characteristics 9		11.2 Trademarks	
,	21		11.3 Electrostatic Discharge Caution	
1	Detailed Description		11.4 Glossary	
	7.1 Overview	12	Mechanical, Packaging, and Orderable Information	

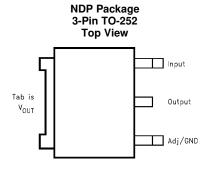
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

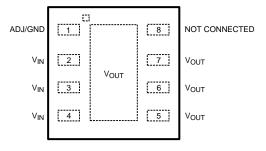

С	hanges from Revision M (March 2013) to Revision N	Page
•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	
•	Removed LM1117-N-2.85 option after part became inactive	1
<u>.</u>	Removed TO-263 Pinout Side View image	3
С	hanges from Revision L (July 2012) to Revision M	Page
•	Changed layout of National Data Sheet to TI format	16


Submit Documentation Feedback


Copyright © 2000–2016, Texas Instruments Incorporated



5 Pin Configuration and Functions



NGN Package 8-Pin WSON Top View

When using the WSON package

Pins 2, 3 and 4 must be connected together and

Pins 5, 6 and 7 must be connected together

Pin Functions

	PIN					I/O	DESCRIPTION		
NAME	TO-252	WSON	SOT-223	TO-263	TO-220	1/0	DESCRIPTION		
ADJ/GND	1	1	1	1	1	_	Adjust pin for adjustable output option. Ground pin for fixed output option.		
V _{IN}	3	2, 3, 4	3	3	3	I	Input voltage pin for the regulator		
V _{OUT}	2 , TAB	5, 6, 7, TAB	2, 4	2, TAB	2, TAB	0	Output voltage pin for the regulator		

Product Folder Links: LM1117

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Maximum Input Voltag	e (V _{IN} to GND)		20	V
Power Dissipation ⁽²⁾		Internally	/ Limited	
Junction Temperature	$(T_{\sf J})^{(2)}$		150	°C
Land Tarrana and trans	TO-220 (T) Package, 10 s		260	00
Lead Temperature	To-220 (T) Package, 10 s SOT-223 (MP) Package, 4 s 150 260 260	°C		
Storage Temperature,	T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000 V may actually have higher performance.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Input Voltage (V _{IN} to GND)			15	V
	LM1117	0	125	°C
Junction Temperature (T _J) ⁽¹⁾	LM1117I	-40	125	

⁽¹⁾ The maximum power dissipation is a function of $T_{J(max)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/R_{\theta JA}$. All numbers apply for packages soldered directly into a PCB.

6.4 Thermal Information

			ı	LM1117, LM1117	71		
	THERMAL METRIC ⁽¹⁾	DCY (SOT-223)	NDE (TO-220)	NDP (TO-252)	NGN (WSON)	KTT (TO-263)	UNIT
		4 PINS	3 PINS	3 PINS	8 PINS	3 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	61.6	23.8	45.1	39.3	41.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	42.5	16.6	52.1	31.4	44.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	10.4	5.3	29.8	16.5	24.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	2.9	3.1	4.5	0.3	10.9	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	10.3	5.3	29.4	16.7	23.2	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	1.5	1.3	5.6	1.3	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Product Folder Links: LM1117

⁽²⁾ The maximum power dissipation is a function of $T_{J(max)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/R_{\theta JA}$. All numbers apply for packages soldered directly into a PCB.

6.5 LM1117 Electrical Characteristics

unless otherwise specified T.

		ONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT	
	LM1117-ADJ I _{OUT} = 10 mA, V _{IN} – V _{OUT} = 2 V, T _S	₁ = 25°C	1.238	1.25	1.262		
Reference Voltage		T _J = 25°C		1.25		V	
	10 mA \leq I _{OUT} \leq 800 mA, 1.4 V \leq V _{IN} - V _{OUT} \leq 10 V	over the junction temperature range 0°C to 125°C	1.225		1.27		
$V_{REF} \qquad \text{Reference Voltage} \qquad \begin{array}{ l l l } \hline LM1117-ADJ \\ 10 \text{ mA} \leq I_{OUT} \leq 800 \text{ mA}, \ 1. \\ \hline V_{IN} - V_{OUT} \leq 10 \text{ V} \\ \hline \\ LM1117-1.8 \\ I_{OUT} = 10 \text{ mA}, \ V_{IN} = 3.8 \text{ V}, \\ \hline \\ LM1117-1.8 \\ 0 \leq I_{OUT} \leq 800 \text{ mA}, \ 3.2 \text{ V} \leq 10 \text{ V} \\ \hline \\ LM1117-2.5 \\ I_{OUT} = 10 \text{ mA}, \ V_{IN} = 4.5 \text{ V}, \\ \hline \\ LM1117-2.5 \\ 0 \leq I_{OUT} \leq 800 \text{ mA}, \ 3.9 \text{ V} \leq 10 \text{ V} \\ \hline \\ LM1117-3.3 \\ I_{OUT} = 10 \text{ mA}, \ V_{IN} = 5 \text{ V} \text{ T}, \\ \hline \\ LM1117-3.3 \\ 0 \leq I_{OUT} \leq 800 \text{ mA}, \ 4.75 \text{ V} \\ 10 \text{ V} \\ \hline \\ LM1117-5.0 \\ I_{OUT} = 10 \text{ mA}, \ V_{IN} = 7 \text{ V}, \text{ T}, \\ \hline \\ LM1117-5.0 \\ 0 \leq I_{OUT} \leq 800 \text{ mA}, \ 6.5 \text{ V} \leq 12 \text{ V} \\ \hline \\ LM1117-1.8 \\ I_{OUT} = 0 \text{ mA}, \ 3.2 \text{ V} \leq \text{V}_{IN} \leq 10 \text{ V} \\ \hline \\ LM1117-1.8 \\ I_{OUT} = 0 \text{ mA}, \ 3.2 \text{ V} \leq \text{V}_{IN} \leq 10 \text{ V} \\ \hline \\ LM1117-2.5 \\ \hline \\ I_{OUT} = 0 \text{ mA}, \ 3.9 \text{ V} \leq \text{V}_{IN} \leq 10 \text{ M} \\ \hline \\ LM1117-3.3 \\ \hline \\ LM1117-3.3 \\ \hline \\ \\ LM1117-3.3 \\ \hline \\ \\ LM1117-3.3 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		°C	1.782	1.8	1.818		
	T 0500	T _J = 25°C		1.8		V	
		$0 \le I_{OUT} \le 800 \text{ mA}, 3.2 \text{ V} \le V_{IN} \le 10 \text{ V}$	over the junction temperature range 0°C to 125°C	1.746		1.854	
	-	°C	2.475	2.5	2.525		
		T _J = 25°C		2.5		V	
Output Valtage	$0 \le I_{OUT} \le 800 \text{ mA}, 3.9 \text{ V} \le V_{IN} \le 10 \text{ V}$	over the junction temperature range 0°C to 125°C	2.45		2.55		
Output Voltage			3.267	3.3	3.333		
		T _J = 25°C		3.3		V	
		over the junction temperature range 0°C to 125°C	3.235		3.365		
	LM1117-5.0 I _{OUT} = 10 mA, V _{IN} = 7 V, T _J = 25°C		4.95	5	5.05		
		T _J = 25°C		5		V	
	$0 \le I_{OUT} \le 800 \text{ mA}, 6.5 \text{ V} \le V_{IN} \le 12 \text{ V}$	over the junction temperature range 0°C to 125°C	4.9		5.1		
	I _{OUT} = 10mA, 1.5V ≤ V _{IN} -V _{OUT} ≤ 13.75V	$T_J = 25^{\circ}C$		0.035%			
		over the junction temperature range 0°C to 125°C			0.2%		
		$T_J = 25^{\circ}C$		1			
		over the junction temperature range 0°C to 125°C			6	mV	
	I M1117-2 5	$T_J = 25^{\circ}C$		1			
Line Regulation(3)	$I_{OUT} = 0 \text{ mA}, 3.9 \text{ V} \le V_{IN} \le 10 \text{ V}$	over the junction temperature range 0°C to 125°C			6	mV	
	LM1117-3.3	$T_J = 25^{\circ}C$		1		mV	
	$I_{OUT} = 0 \text{ mA}, 4.75 \text{ V} \le V_{IN} \le 15 \text{ V}$	over the junction temperature range 0°C to 125°C			6		
	LM1117-5.0	$T_J = 25^{\circ}C$		1		.,	
	$I_{OUT} = 0 \text{ mA}, 6.5 \text{ V} \le V_{IN} \le 15 \text{ V}$	over the junction temperature range 0°C to 125°C			10	mV	
	LM1117-ADJ	T _J = 25°C		0.2%			
	$V_{IN} - V_{OUT} = 3 \text{ V}, 10 \le I_{OUT} \le 800 \text{ mA}$	over the junction temperature range 0°C to 125°C			0.4%		
	LM1117-1.8	$T_J = 25^{\circ}C$		1			
	$V_{IN} = 3.2 \text{ V}, \ 0 \le I_{OUT} \le 800 \text{ mA}$	over the junction temperature range 0°C to 125°C			10	mV	
L = = 1 D = = 1 · · · · · (2)	LM1117-2.5	$T_J = 25^{\circ}C$		1			
Load Regulation(9)	$V_{IN} = 3.9 \text{ V}, \ 0 \le I_{OUT} \le 800 \text{ mA}$	over the junction temperature range 0°C to 125°C			10	mV	
	LM1117-3.3	T _J = 25°C		1			
	LM1117-3.3 V _{IN} = 4.75 V, 0 ≤ I _{OUT} ≤ 800 mA	over the junction temperature range 0°C to 125°C			10	mV	
	LM1117-5.0	T _J = 25°C		1			
	LM1117-5.0 $V_{IN} = 6.5 \text{ V}, 0 \le I_{OUT} \le 800 \text{ mA}$	over the junction temperature range 0°C to 125°C			15	mV	
	Output Voltage	Reference Voltage	Reference Voltage LM1117-ADJ 10 m Å s	Reference Voltage LM1117-ADJ LM117-ADJ LM117-B LM117-B	Military Military	Reference Voltage	

⁽¹⁾ All limits are ensured by testing or statistical analysis.(2) Typical Values represent the most likely parametric normal.

Copyright © 2000–2016, Texas Instruments Incorporated

Load and line regulation are measured at constant junction room temperature.

LM1117 Electrical Characteristics (continued)

unless otherwise specified, $T_J = 25$ °C.

	PARAMETER	TEST C	CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			T _J = 25°C		1.1		
		I _{OUT} = 100 mA	over the junction temperature range 0°C to 125°C			1.2	V
V V			$T_J = 25$ °C	1.15			
V _{IN} – V OUT	Dropout Voltage (4)	I _{OUT} = 500 mA	over the junction temperature range 0°C to 125°C			1.25	V
			$T_J = 25^{\circ}C$		1.2		
		I _{OUT} = 800 mA	over the junction temperature range 0°C to 125°C			1.3	V
I _{LIMIT}	Current Limit	$V_{IN} - V_{OUT} = 5 \text{ V}, T_{J} = 25^{\circ}\text{C}$		800	1200	1500	mA
	Minimum Load	LM1117-ADJ	$T_J = 25^{\circ}C$		1.7		
	Current ⁽⁵⁾	V _{IN} = 15 V	over the junction temperature range 0°C to 125°C			5	mA
		LM1117-1.8	$T_J = 25$ °C		5		
	$V_{\text{IN}} \leq 15 \text{ V}$ $LM1117-1.8$ $V_{\text{IN}} \leq 15 \text{ V}$ $V_{\text{IN}} \leq 15 \text{ V}$ $Quiescent Current$		over the junction temperature range 0°C to 125°C			10	mA
		I M1117-2 5	$T_J = 25^{\circ}C$		5		
			over the junction temperature range 0°C to 125°C			10	mA
	Quiescent Current	LM1117-3.3	$T_J = 25^{\circ}C$		5		mA
		V _{IN} ≤ 15 V	over the junction temperature range 0°C to 125°C			10	
		LM1117-5.0	$T_J = 25^{\circ}C$		5		
		V _{IN} ≤ 15 V	over the junction temperature range 0°C to 125°C			10	mA
	Thermal Regulation	T _A = 25°C, 30-ms pulse			0.01	0.1	%/W
		$f_{BIPPLE} = 1 20 \text{ Hz}, V_{IN} - V_{OUT} = 3$	$T_J = 25^{\circ}C$		75		
	Ripple Regulation	V V _{RIPPLE} = 1 V _{PP}	over the junction temperature range 0°C to 125°C	60			dB
	Adjust Din Current	$T_J = 25^{\circ}C$			60		μA
	Adjust Pin Current	over the junction temperature range	ge 0°C to 125°C			120	μΑ
	Adjust Pin Current 10 ≤ I _{OUT} ≤ 80 0mA,	$T_J = 25^{\circ}C$		0.2			
	Change	$10 \le I_{OUT} \le 80 \text{ 0mA},$ $1.4 \text{ V} \le V_{IN} - V_{OUT} \le 10 \text{ V}$	over the junction temperature range 0°C to 125°C			5	μА
	Temperature Stability				0.5%		
	Long Term Stability	T _A = 125°C, 1000 Hrs			0.3%		
	RMS Output Noise	(% of V_{OUT}), 10 Hz \leq f \leq 10 kHz			0.003%		

The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 100 mV from the nominal value obtained at $V_{IN} = V_{OUT} + 1.5 \text{ V}$. The minimum output current required to maintain regulation.

Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated

6.6 LM1117I Electrical Characteristics

unless otherwise specified, $T_J = 25^{\circ}C$.

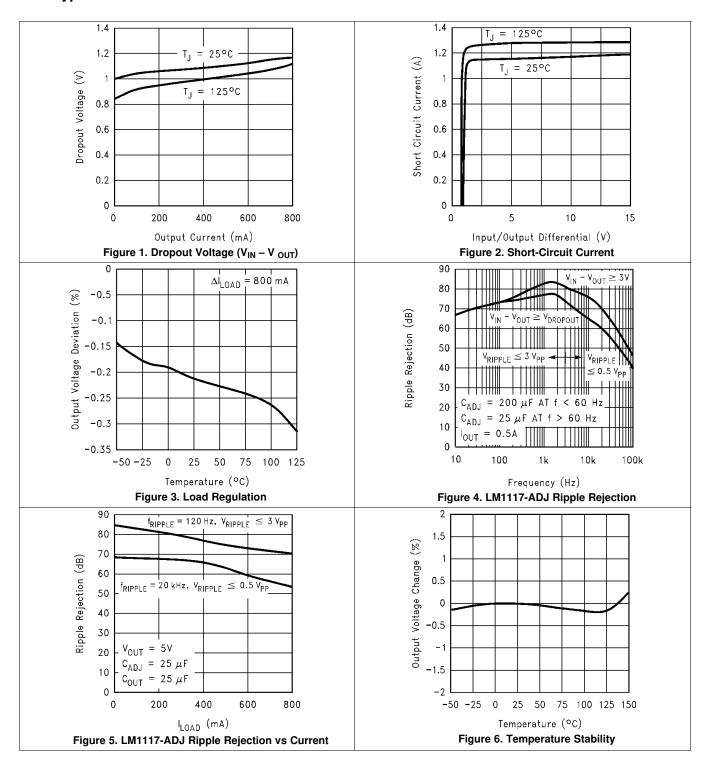
	PARAMETER	TEST CONDITION	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT		
		$I_{OUT} = 10 \text{ mA}, V_{IN} - V_{OUT} = 2 \text{ V}, T_{J} = 10 \text{ mA}$	25°C	1.238	1.25	1.262			
V_{REF}	Reference Voltage	LM1117I-ADJ	$T_J = 25^{\circ}C$		1.25		V		
* HEF	THEIR STATES STATES	10 mA \leq I _{OUT} \leq 800 mA, 1.4 V \leq V _{IN} $-$ V _{OUT} \leq 10 V	over the junction temperature range -40°C to 125°C	1.2		1.29	·		
		LM1117I-3.3 I _{OUT} = 10 mA, V _{IN} = 5 V, T _J = 25°C		3.267	3.3	3.333			
		L M4447L 2 2	$T_J = 25^{\circ}C$		3.3		V		
M	Output Valtage	LM1117I-3.3 $0 \le I_{OUT} \le 800 \text{ mA}, 4.75 \text{ V} \le V_{IN} \le 10 \text{ V}$	over the junction temperature range -40°C to 125°C	3.168		3.432	·		
V _{OUT}	Output Voltage	LM1117I-5.0 I _{OUT} = 10 mA, V _{IN} = 7 V, T _J = 25°C		4.95	5	5.05			
			$T_J = 25^{\circ}C$		5		V		
	LM1117I-5.0 $0 \le I_{OUT} \le 800 \text{ mA}, 6.5 \text{ V} \le 100 \text{ V}$	$0 \le I_{OUT} \le 800 \text{ mA}, 6.5 \text{ V} \le V_{IN} \le 12$	over the junction temperature range -40°C to 125°C	4.8		5.2	v		
		ine Regulation ⁽³⁾ $I_{OUT} = 10 \text{ mA, } 1.5 \text{ V} \le V_{IN} - V_{OUT} \le 13.75 \text{ V}$ $I_{OUT} = 0 \text{ mA, } 4.75 \text{ V} \le V_{IN} \le 15 \text{ V}$	T _J = 25°C		0.035%				
			over the junction temperature range -40°C to 125°C			0.3%			
			$T_J = 25^{\circ}C$		1				
ΔV _{OUT}	Line Regulation ⁽³⁾		over the junction temperature range -40°C to 125°C			10	mV		
			$T_J = 25^{\circ}C$		1				
		LM1117I-5.0 I _{OUT} = 0 mA, 6.5 V ≤ V _{IN} ≤ 15 V	over the junction temperature range -40°C to 125°C			15	mV		
		L M4147L AD L	$T_J = 25^{\circ}C$		0.2%				
		LM1117I-ADJ $V_{IN} - V_{OUT} = 3 \text{ V}, 10 \le I_{OUT} \le 800 \text{ mA}$	over the junction temperature range -40°C to 125°C			0.5%			
			T _J = 25°C		1				
ΔV_{OUT}	Load Regulation ⁽³⁾	LM1117I-3.3 $V_{IN} = 4.75 \text{ V}, 0 \le I_{OUT} \le 800 \text{ mA}$	over the junction temperature range -40°C to 125°C			15	mV		
			$T_J = 25^{\circ}C$		1				
				LM1117I-5.0 $V_{IN} = 6.5 \text{ V}, 0 \le I_{OUT} \le 800 \text{ mA}$	over the junction temperature range -40°C to 125°C			20	mV

 ⁽¹⁾ All limits are ensured by testing or statistical analysis.
 (2) Typical Values represent the most likely parametric normal.
 (3) Load and line regulation are measured at constant in a statistical analysis. Load and line regulation are measured at constant junction room temperature.

LM1117I Electrical Characteristics (continued)

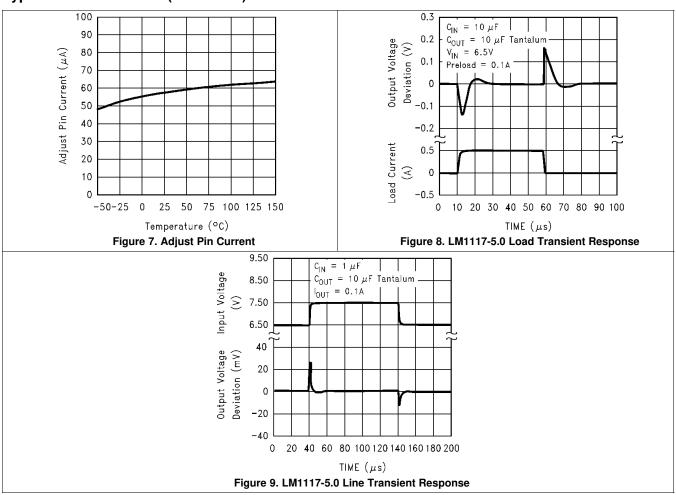
unless otherwise specified, $T_J = 25$ °C.

P	ARAMETER	TEST CONDITI	ONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			T _J = 25°C		1.1		
		I _{OUT} = 100 mA	over the junction temperature range –40°C to 125°C			1.3	V
			$T_J = 25^{\circ}C$		1.15		
V _{IN} -V _{OUT}	Dropout Voltage ⁽⁴⁾	I _{OUT} = 500 mA	over the junction temperature range -40°C to 125°C			1.35	V
			T _J = 25°C		1.2		
		I _{OUT} = 800 mA	over the junction temperature range –40°C to 125°C			1.4	V
I _{LIMIT}	Current Limit	$V_{IN} - V_{OUT} = 5 \text{ V}, T_{J} = 25^{\circ}\text{C}$		800	1200	1500	mA
			$T_J = 25^{\circ}C$		1.7		
	Minimum Load Current ⁽⁵⁾	finimum Load LM1117I-ADJ $V_{IN} = 15 \text{ V}$	over the junction temperature range –40°C to 125°C			5	mA
		LM1117I-3.3 V _{IN} ≤ 15 V	T _J = 25°C		5		
	Ouissess Ouward		over the junction temperature range –40°C to 125°C			15	mA
	Quiescent Current		T _J = 25°C		5		
		LM1117I-5.0 V _{IN} ≤ 15 V	over the junction temperature range -40°C to 125°C			15	mA
	Thermal Regulation	T _A = 25°C, 30ms Pulse			0.01	0.1	%/W
			T _J = 25°C		75		
	Ripple Regulation	$ f_{RIPPLE} = 120 \text{ Hz}, V_{IN} - V_{OUT} = 3 \text{ V} $ $V_{RIPPLE} = 1 \text{ V}_{PP} $	over the junction temperature range –40°C to 125°C	60			dB
	Adjust Din Current	T _J = 25°C			60		
	Adjust Pin Current	over the junction temperature range	-40°C to 125°C			120	μA
			$T_J = 25^{\circ}C$		0.2		
	Adjust Pin Current Change	$10 \le I_{OUT} \le 800 \text{ mA},$ $1.4 \text{ V} \le V_{IN} - V_{OUT} \le 10 \text{ V}$	over the junction temperature range -40°C to 125°C			10	μΑ
	Temperature Stability				0.5%		
	Long Term Stability	T _A = 125°C, 1000 Hrs			0.3%		
	RMS Output Noise	(% of V _{OUT}), 10 Hz ≤ f ≤ 10 kHz			0.003%		


The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 100 mV from the nominal value obtained at $V_{IN} = V_{OUT} + 1.5 \text{ V}$. The minimum output current required to maintain regulation.

Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated


6.7 Typical Characteristics

Copyright © 2000–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

7 Detailed Description

7.1 Overview

The LM1117 adjustable version develops a 1.25V reference voltage, V_{REF} , between the output and the adjust terminal. As shown in Figure 10, this voltage is applied across resistor R1 to generate a constant current I1. The current I_{ADJ} from the adjust terminal could introduce error to the output. But since it is very small (60 μ A) compared with the I1 and very constant with line and load changes, the error can be ignored. The constant current I1 then flows through the output set resistor R2 and sets the output voltage to the desired level.

For fixed voltage devices, R1 and R2 are integrated inside the devices.

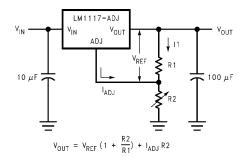
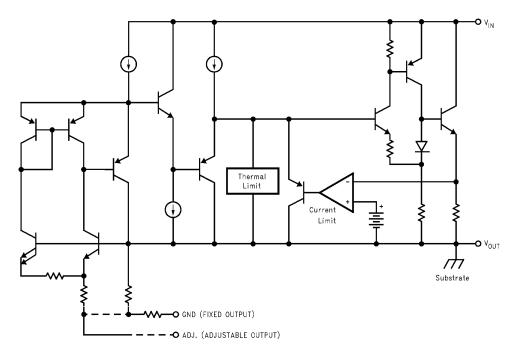



Figure 10. Basic Adjustable Regulator

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Load Regulation

The LM1117 regulates the voltage that appears between its output and ground pins, or between its output and adjust pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed.

Copyright © 2000–2016, Texas Instruments Incorporated

Feature Description (continued)

Figure 11, shows a typical application using a fixed output regulator. The Rt1 and Rt2 are the line resistances. It is obvious that the V_{LOAD} is less than the V_{OUT} by the sum of the voltage drops along the line resistances. In this case, the load regulation seen at the R_{LOAD} would be degraded from the data sheet specification. To improve this, the load should be tied directly to the output terminal on the positive side and directly tied to the ground terminal on the negative side.

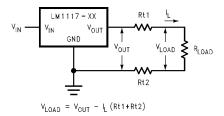


Figure 11. Typical Application Using Fixed Output Regulator

When the adjustable regulator is used (Figure 12), the best performance is obtained with the positive side of the resistor R1 tied directly to the output terminal of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 5V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05\Omega \times I_L$. If R1 (=125 Ω) is connected near the load, the effective line resistance will be 0.05Ω (1+R2/R1) or in this case, it is 4 times worse. In addition, the ground side of the resistor R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

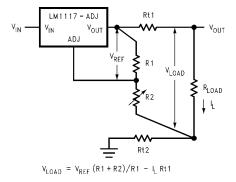


Figure 12. Best Load Regulation Using Adjustable Output Regulator

7.4 Device Functional Modes

7.4.1 Protection Diodes

Under normal operation, the LM1117 regulators do not need any protection diode. With the adjustable device, the internal resistance between the adjust and output terminals limits the current. No diode is needed to divert the current around the regulator even with capacitor on the adjust terminal. The adjust pin can take a transient signal of ± 25 V with respect to the output voltage without damaging the device.

When a output capacitor is connected to a regulator and the input is shorted to ground, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and rate of decrease of V_{IN} . In the LM1117 regulators, the internal diode between the output and input pins can withstand microsecond surge currents of 10A to 20A. With an extremely large output capacitor (\geq 1000 µF), and with input instantaneously shorted to ground, the regulator could be damaged.

In this case, an external diode is recommended between the output and input pins to protect the regulator, as shown in Figure 13.

Product Folder Links: LM1117

Device Functional Modes (continued)

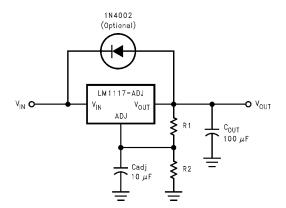
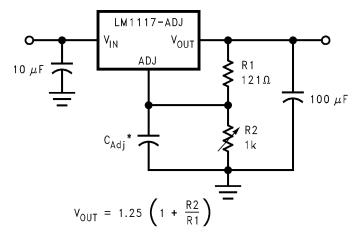


Figure 13. Regulator With Protection Diode

Copyright © 2000–2016, Texas Instruments Incorporated

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM1117 is a versatile and high performance linear regulator with a wide temperature range and tight line/load regulation operation. An output capacitor is required to further improve transient response and stability. For the adjustable option, the ADJ pin can also be bypassed to achieve very high ripple-rejection ratios. The LM1117 is versatile in its applications, including its uses as a post regulator for DC/DC converters, battery chargers, and microprocessor supplies.

8.2 Typical Application

^{*} C_{Adi} is optional, however it will improve ripple rejection.

Figure 14. 1.25-V to 10-V Adjustable Regulator With Improved Ripple Rejection

8.2.1 Design Requirements

The device component count is very minimal, employing two resistors as part of a voltage divider circuit and an output capacitor for load regulation. A 10-µF tantalum on the input is a suitable input capacitor for almost all applications. An optional bypass capacitor across R2 can also be used to improve PSRR. See *Recommended Operating Conditions* for more information.

8.2.2 Detailed Design Procedure

The output voltage is set based on the selection of the two resistors, R1 and R2, as shown in Figure 14. For details on capacitor selection, refer to *External Capacitors*.

8.2.2.1 External Capacitors

8.2.2.1.1 Input Bypass Capacitor

An input capacitor is recommended. A $10-\mu F$ tantalum on the input is a suitable input capacitor for almost all applications.

Product Folder Links: LM1117

Typical Application (continued)

8.2.2.1.2 Adjust Terminal Bypass Capacitor

The adjust terminal can be bypassed to ground with a bypass capacitor (C_{ADJ}) to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. At any ripple frequency, the impedance of the C_{ADJ} should be less than R1 to prevent the ripple from being amplified:

$$1/(2\pi \times f_{RIPPLE} \times C_{ADJ}) < R1 \tag{1}$$

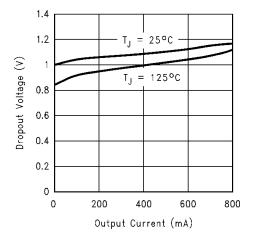
The R1 is the resistor between the output and the adjust pin. Its value is normally in the range of $100-200\Omega$. For example, with R1 = 124Ω and f_{RIPPLE} = 120Hz, the C_{ADJ} should be > 11μ F.

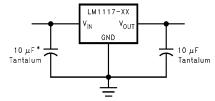
8.2.2.1.3 Output Capacitor

The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and equivalent series resistance (ESR). The minimum output capacitance required by the LM1117 is 10 μ F, if a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should range between 0.3 Ω to 22 Ω . In the case of the adjustable regulator, when the C_{ADJ} is used, a larger output capacitance (22- μ F tantalum) is required.

8.2.3 Application Curve

As shown in Figure 15, the dropout voltage will vary with output current and temperature. Care should be taken during design to ensure the dropout voltage requirement is met across the entire operating temperature and output current range.




Figure 15. Dropout Voltage (V_{IN} – V_{OUT})

Copyright © 2000–2016, Texas Instruments Incorporated

8.3 System Examples

Several circuits can be realized with the LM1117. The circuit diagrams in this section demonstrate multiple system examples that can be utilized in many applications.

^{*} Required if the regulator is located far from the power supply filter.

Figure 16. Fixed Output Regulator

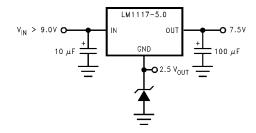


Figure 18. Regulator With Reference

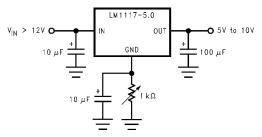


Figure 17. Adjusting Output of Fixed Regulators

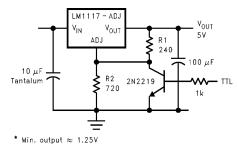


Figure 19. 5-V Logic Regulator With Electronic Shutdown*

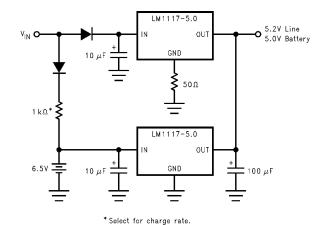


Figure 20. Battery Backed-Up Regulated Supply

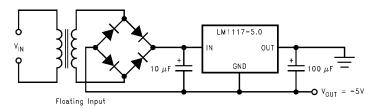


Figure 21. Low Dropout Negative Supply

Product Folder Links: *LM1117*

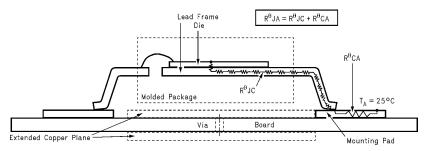
Copyright © 2000-2016, Texas Instruments Incorporated

9 Power Supply Recommendations

The input supply to the LM1117 must be kept at a voltage level such that its maximum rating is not exceeded. The minimum dropout voltage must also be met with extra headroom when possible to keep the LM1117 in regulation. An input capacitor is recommended. For more information regarding capacitor selection, refer to *External Capacitors*.

10 Layout

10.1 Layout Guidelines


Some layout guidelines must be followed to ensure proper regulation of the output voltage with minimum noise. Traces carrying the load current must be wide to reduce the amount of parasitic trace inductance and the feedback loop from V_{OUT} to ADJ must be kept as short as possible. To improve PSRR, a bypass capacitor can be placed at the ADJ pin and must be located as close as possible to the IC. In cases when V_{IN} shorts to ground, an external diode must be placed from V_{OUT} to V_{IN} to divert the surge current from the output capacitor and protect the IC. The diode must be placed close to the corresponding IC pins to increase their effectiveness.

10.1.1 Heatsink Requirements

When an integrated circuit operates with an appreciable current, its junction temperature is elevated. It is important to quantify its thermal limits in order to achieve acceptable performance and reliability. This limit is determined by summing the individual parts consisting of a series of temperature rises from the semiconductor junction to the operating environment. A one-dimensional steady-state model of conduction heat transfer is demonstrated in Figure 22. The heat generated at the device junction flows through the die to the die attach pad, through the lead frame to the surrounding case material, to the printed circuit board, and eventually to the ambient environment. Below is a list of variables that may affect the thermal resistance and in turn the need for a heatsink.

Table 1. Component and Application Variables

R _{0JC} (COMPONENT VARIABLES)	R _{0JA} (APPLICATION VARIABLES)
Leadframe Size and Material	Mounting Pad Size, Material, and Location
No. of Conduction Pins	Placement of Mounting Pad
Die Size	PCB Size and Material
Die Attach Material	Traces Length and Width
Molding Compound Size and Material	Adjacent Heat Sources
	Volume of Air
	Ambient Temperatue
	Shape of Mounting Pad

The case temperature is measured at the point where the leads contact with the mounting pad surface

Figure 22. Cross-Sectional View of Integrated Circuit Mounted on a Printed Circuit Board

Product Folder Links: LM1117

The LM1117 regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the LM1117 must be within the range of 0°C to 125°C. A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. To determine if a heatsink is needed, the power dissipated by the regulator, P_D , must be calculated:

$$I_{IN} = I_L + I_G \tag{2}$$

$$P_{D} = (V_{IN} - V_{OUT})I_{L} + V_{IN}I_{G}$$
(3)

Figure 23 shows the voltages and currents which are present in the circuit.

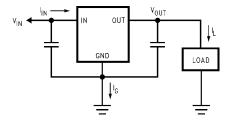


Figure 23. Power Dissipation Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, $T_R(max)$:

$$T_{B}(max) = T_{J}(max) - T_{A}(max)$$

where

- T_J(max) is the maximum allowable junction temperature (125°C) which will be encountered in the application
- T_Δ(max) is the maximum ambient temperature which will be encountered in the application

Using the calculated values for $T_R(max)$ and P_D , the maximum allowable value for the junction-to-ambient thermal resistance ($R_{\theta JA}$) can be calculated:

$$R_{A,IA} = T_{R}(max)/P_{D} \tag{5}$$

For the maximum allowable value for θ_{JA} , refer to the *Thermal Information* table.

As a design aid, Table 2 shows the value of the θ_{JA} of SOT-223 and TO-252 for different heatsink area. Figure 24 and Figure 25 reflects the same test results as what are in the Table 2

Figure 26 and Figure 27 shows the maximum allowable power dissipation vs. ambient temperature for the SOT-223 and TO-252 device. Figure 28 and Figure 29 shows the maximum allowable power dissipation vs. copper area (in²) for the SOT-223 and TO-252 devices. Please see AN1028 for power enhancement techniques to be used with SOT-223 and TO-252 packages.

Application Note AN-1187 (SNOA401) discusses improved thermal performance and power dissipation for the WSON.

Table 2. R_{0JA} Different Heatsink Area

LAYOUT	СОРРЕ	R AREA	THERMAL R	ESISTANCE
	Top Side (in ²) ⁽¹⁾	Bottom Side (in ²)	(θ _{JA} ,°C/W) SOT-223	(θ _{JA} ,°C/W) TO-252
1	0.0123	0	136	103
2	0.066	0	123	87
3	0.3	0	84	60
4	0.53	0	75	54
5	0.76	0	69	52
6	1	0	66	47
7	0	0.2	115	84
8	0	0.4	98	70
9	0	0.6	89	63
10	0	0.8	82	57

(1) Tab of device attached to topside copper

Table 2. R_{0JA} Different Heatsink Area (continued)

LAYOUT	COPPER	RAREA	THERMAL RESISTANCE			
11	0	1	79	57		
12	0.066	0.066	125	89		
13	0.175	0.175	93	72		
14	0.284	0.284	83	61		
15	0.392	0.392	75	55		
16	0.5	0.5	70	53		

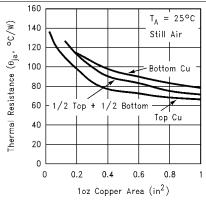


Figure 24. $R_{\theta JA}$ vs 1-oz Copper Area for SOT-223

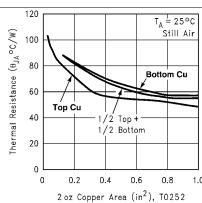


Figure 25. R_{0JA} vs 2-oz Copper Area for TO-252

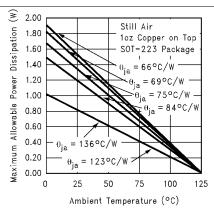


Figure 26. Maximum Allowable Power Dissipation vs Ambient Temperature for SOT-223

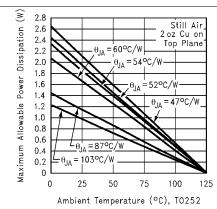


Figure 27. Maximum Allowable Power Dissipation vs Ambient Temperature for TO-252

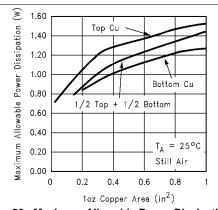


Figure 28. Maximum Allowable Power Dissipation vs 1-oz Copper Area for SOT-223

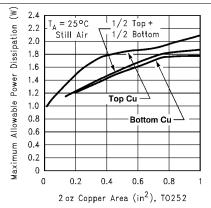


Figure 29. Maximum Allowable Power Dissipation vs 2-oz Copper Area for TO-252

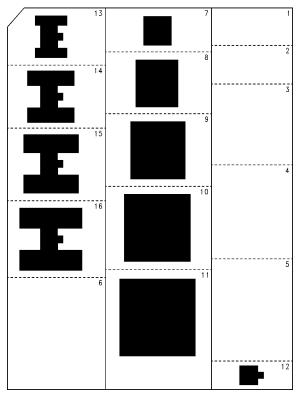


Figure 30. Top View of the Thermal Test Pattern in Actual Scale

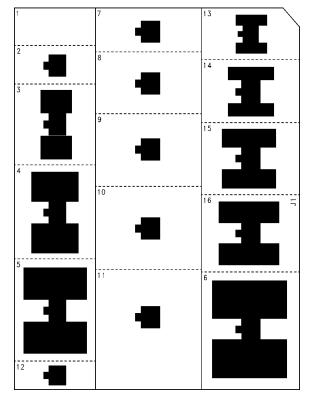


Figure 31. Bottom View of the Thermal Test Pattern in Actual Scale

Submit Documentation Feedback

Copyright © 2000–2016, Texas Instruments Incorporated

10.2 Layout Example

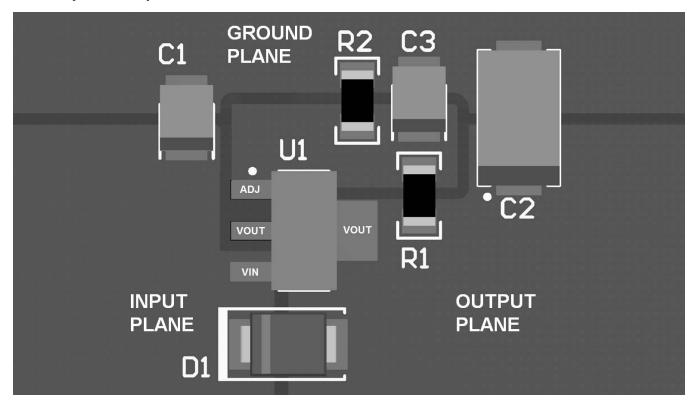


Figure 32. Layout Example (SOT-223)

Device and Documentation Support

11.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 — TI Glossarv.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

3-Feb-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM1117DT-1.8/NOPB	ACTIVE	TO-252	NDP	3	75	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-1.8	Samples
LM1117DT-2.5/NOPB	ACTIVE	TO-252	NDP	3	75	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-2.5	Samples
LM1117DT-3.3/NOPB	ACTIVE	TO-252	NDP	3	75	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-3.3	Samples
LM1117DT-5.0/NOPB	ACTIVE	TO-252	NDP	3	75	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-5.0	Samples
LM1117DT-ADJ/NOPB	ACTIVE	TO-252	NDP	3	75	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-ADJ	Samples
LM1117DTX-1.8/NOPB	ACTIVE	TO-252	NDP	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-1.8	Samples
LM1117DTX-2.5/NOPB	ACTIVE	TO-252	NDP	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-2.5	Samples
LM1117DTX-3.3/NOPB	ACTIVE	TO-252	NDP	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-3.3	Samples
LM1117DTX-5.0/NOPB	ACTIVE	TO-252	NDP	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-5.0	Samples
LM1117DTX-ADJ/NOPB	ACTIVE	TO-252	NDP	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	LM1117 DT-ADJ	Samples
LM1117IDT-3.3/NOPB	ACTIVE	TO-252	NDP	3	75	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	LM1117 IDT-3.3	Samples
LM1117IDT-5.0/NOPB	ACTIVE	TO-252	NDP	3	75	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	LM1117 IDT-5.0	Samples
LM1117IDT-ADJ/NOPB	ACTIVE	TO-252	NDP	3	75	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	LM1117 IDT-ADJ	Samples
LM1117IDTX-3.3/NOPB	ACTIVE	TO-252	NDP	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	LM1117 IDT-3.3	Samples
LM1117IDTX-5.0/NOPB	ACTIVE	TO-252	NDP	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	LM1117 IDT-5.0	Samples
LM1117IDTX-ADJ/NOPB	ACTIVE	TO-252	NDP	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	LM1117 IDT-ADJ	Samples
LM1117ILD-ADJ/NOPB	ACTIVE	WSON	NGN	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	1117IAD	Samples

3-Feb-2016

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM1117IMP-3.3/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	N05B	Samples
LM1117IMP-5.0/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	N06B	Samples
LM1117IMP-ADJ/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	N03B	Samples
LM1117IMPX-3.3/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	N05B	Samples
LM1117IMPX-5.0/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	N06B	Samples
LM1117IMPX-ADJ/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	N03B	Samples
LM1117LD-1.8/NOPB	ACTIVE	WSON	NGN	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	1117-18	Samples
LM1117LD-2.5/NOPB	ACTIVE	WSON	NGN	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	1117-25	Samples
LM1117LD-3.3/NOPB	ACTIVE	WSON	NGN	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	1117-33	Samples
LM1117LD-ADJ/NOPB	ACTIVE	WSON	NGN	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	1117ADJ	Samples
LM1117LDX-1.8	NRND	WSON	NGN	8	4500	TBD	Call TI	Call TI	0 to 125	1117-18	
LM1117LDX-1.8/NOPB	ACTIVE	WSON	NGN	8	4500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	1117-18	Samples
LM1117LDX-ADJ/NOPB	ACTIVE	WSON	NGN	8	4500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	1117ADJ	Samples
LM1117MP-1.8/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N12A	Samples
LM1117MP-2.5/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N13A	Samples
LM1117MP-3.3/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N05A	Samples
LM1117MP-5.0/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N06A	Samples
LM1117MP-ADJ/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N03A	Samples

3-Feb-2016

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM1117MPX-1.8/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N12A	Samples
LM1117MPX-2.5/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N13A	Samples
LM1117MPX-3.3	ACTIVE	SOT-223	DCY	4	2000	TBD	Call TI	Call TI		N05A	Samples
LM1117MPX-3.3/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N05A	Samples
LM1117MPX-5.0/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N06A	Samples
LM1117MPX-ADJ/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 125	N03A	Samples
LM1117S-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM1117S ADJ	Samples
LM1117SX-3.3/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM1117S 3.3	Samples
LM1117SX-5.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM1117S 5.0	Samples
LM1117SX-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LM1117S ADJ	Samples
LM1117T-2.5/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LM1117T 2.5	Samples
LM1117T-3.3/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LM1117T 3.3	Samples
LM1117T-5.0/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LM1117T 5.0	Samples
LM1117T-ADJ/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LM1117T ADJ	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

3-Feb-2016

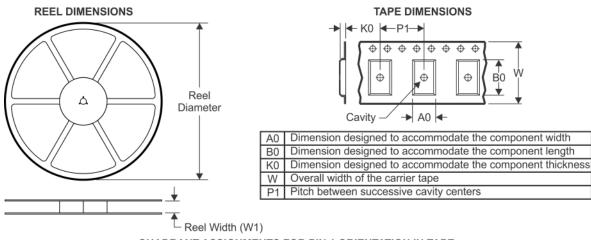
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

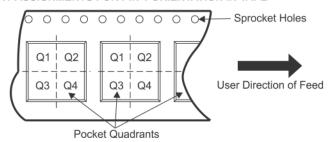
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

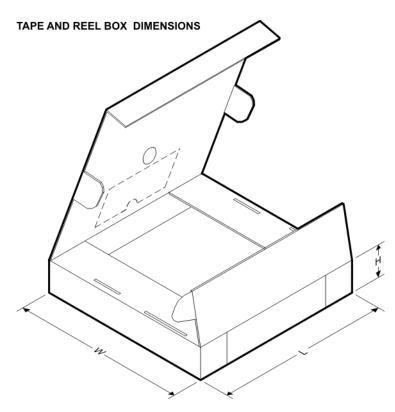

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Sep-2016

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

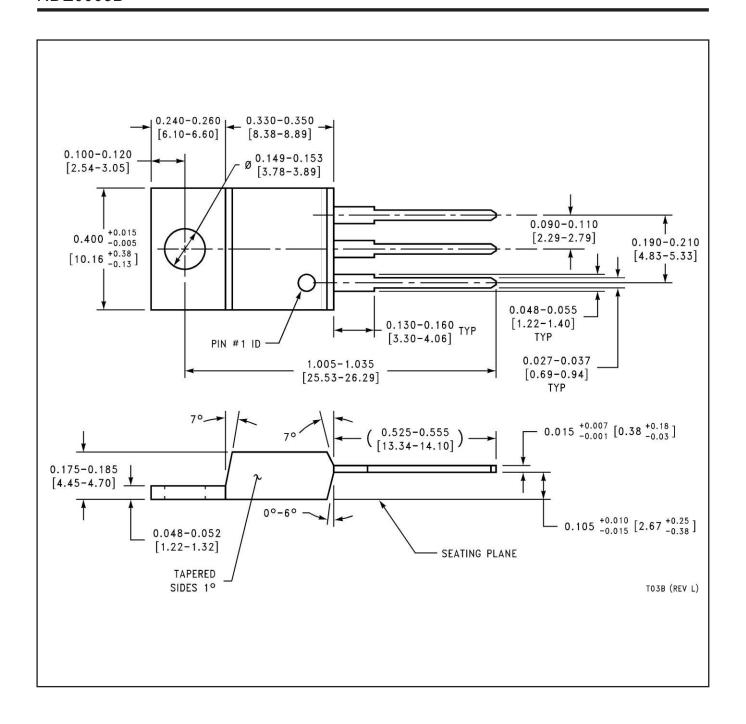
*All dimensions are nominal

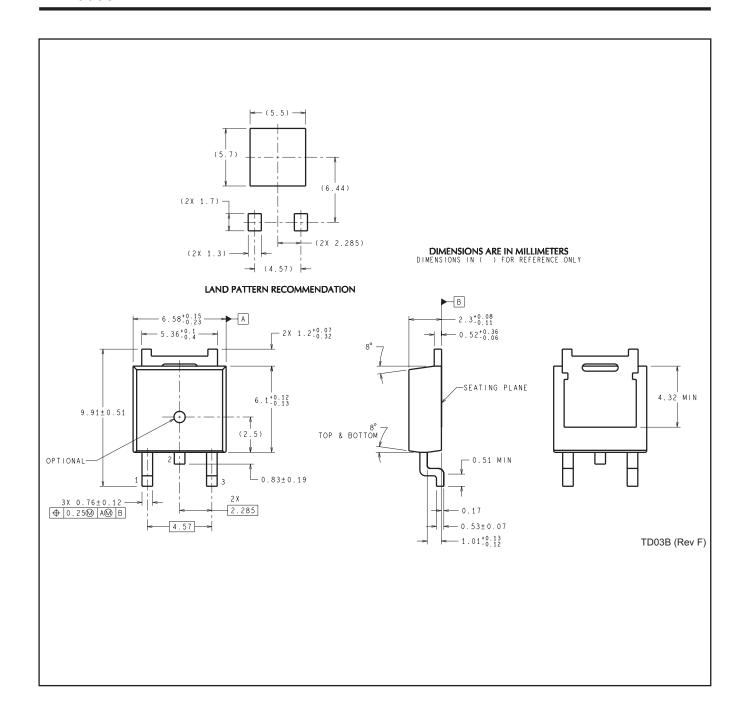

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM1117DTX-1.8/NOPB	TO-252	NDP	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
LM1117DTX-2.5/NOPB	TO-252	NDP	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
LM1117DTX-3.3/NOPB	TO-252	NDP	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
LM1117DTX-5.0/NOPB	TO-252	NDP	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
LM1117DTX-ADJ/NOPB	TO-252	NDP	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
LM1117IDTX-3.3/NOPB	TO-252	NDP	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
LM1117IDTX-5.0/NOPB	TO-252	NDP	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
LM1117IDTX-ADJ/NOPB	TO-252	NDP	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
LM1117ILD-ADJ/NOPB	WSON	NGN	8	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM1117IMP-3.3/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117IMP-5.0/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117IMP-ADJ/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117IMPX-3.3/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117IMPX-5.0/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117IMPX-ADJ/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117LD-1.8/NOPB	WSON	NGN	8	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM1117LD-2.5/NOPB	WSON	NGN	8	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM1117LD-3.3/NOPB	WSON	NGN	8	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Sep-2016

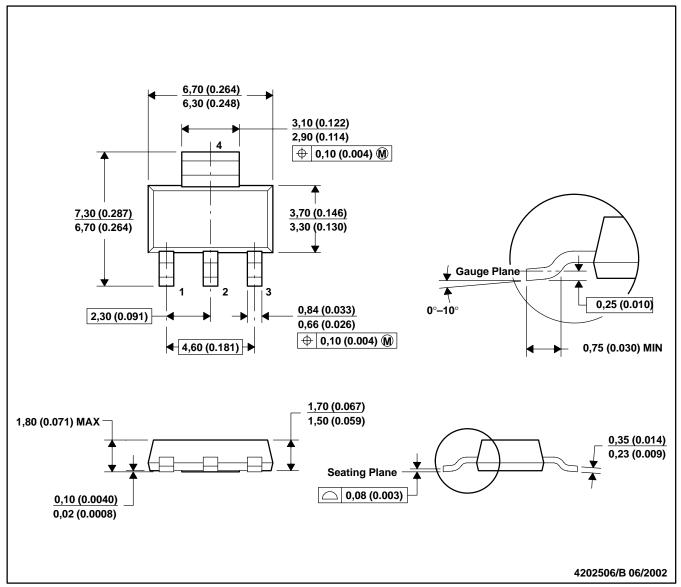
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM1117LD-ADJ/NOPB	WSON	NGN	8	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM1117LDX-1.8	WSON	NGN	8	4500	330.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM1117LDX-1.8/NOPB	WSON	NGN	8	4500	330.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM1117LDX-ADJ/NOPB	WSON	NGN	8	4500	330.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM1117MP-1.8/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MP-2.5/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MP-3.3/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MP-5.0/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MP-ADJ/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MPX-1.8/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MPX-2.5/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MPX-3.3	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MPX-3.3/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MPX-5.0/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117MPX-ADJ/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM1117SX-3.3/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM1117SX-5.0/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM1117SX-ADJ/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2




PACKAGE MATERIALS INFORMATION

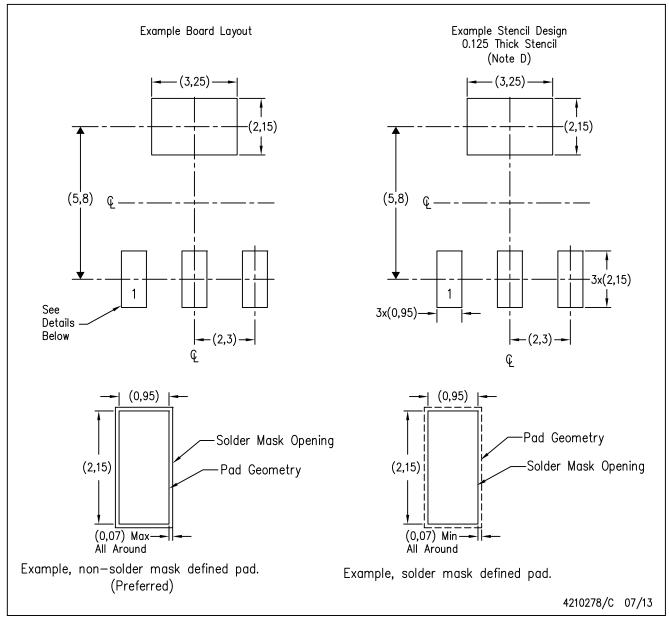
www.ti.com 20-Sep-2016

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM1117DTX-1.8/NOPB	TO-252	NDP	3	2500	367.0	367.0	38.0
LM1117DTX-2.5/NOPB	TO-252	NDP	3	2500	367.0	367.0	38.0
LM1117DTX-3.3/NOPB	TO-252	NDP	3	2500	367.0	367.0	38.0
LM1117DTX-5.0/NOPB	TO-252	NDP	3	2500	367.0	367.0	38.0
LM1117DTX-ADJ/NOPB	TO-252	NDP	3	2500	367.0	367.0	38.0
LM1117IDTX-3.3/NOPB	TO-252	NDP	3	2500	367.0	367.0	38.0
LM1117IDTX-5.0/NOPB	TO-252	NDP	3	2500	367.0	367.0	38.0
LM1117IDTX-ADJ/NOPB	TO-252	NDP	3	2500	367.0	367.0	38.0
LM1117ILD-ADJ/NOPB	WSON	NGN	8	1000	210.0	185.0	35.0
LM1117IMP-3.3/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM1117IMP-5.0/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM1117IMP-ADJ/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM1117IMPX-3.3/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117IMPX-5.0/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117IMPX-ADJ/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117LD-1.8/NOPB	WSON	NGN	8	1000	210.0	185.0	35.0
LM1117LD-2.5/NOPB	WSON	NGN	8	1000	210.0	185.0	35.0
LM1117LD-3.3/NOPB	WSON	NGN	8	1000	210.0	185.0	35.0
LM1117LD-ADJ/NOPB	WSON	NGN	8	1000	210.0	185.0	35.0
LM1117LDX-1.8	WSON	NGN	8	4500	367.0	367.0	35.0
LM1117LDX-1.8/NOPB	WSON	NGN	8	4500	367.0	367.0	35.0
LM1117LDX-ADJ/NOPB	WSON	NGN	8	4500	367.0	367.0	35.0
LM1117MP-1.8/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM1117MP-2.5/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM1117MP-3.3/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM1117MP-5.0/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM1117MP-ADJ/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM1117MPX-1.8/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117MPX-2.5/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117MPX-3.3	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117MPX-3.3/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117MPX-5.0/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117MPX-ADJ/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM1117SX-3.3/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM1117SX-5.0/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM1117SX-ADJ/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0

DCY (R-PDSO-G4)

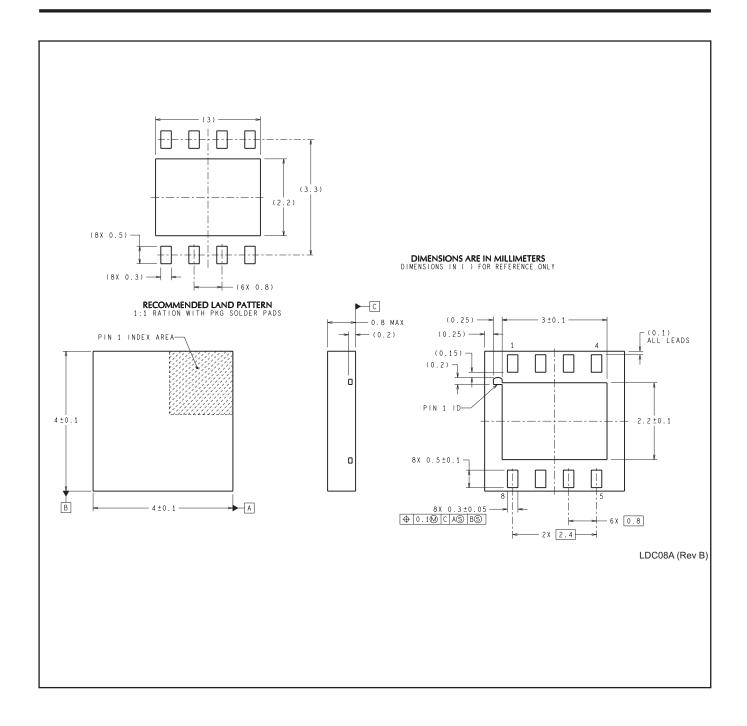
PLASTIC SMALL-OUTLINE

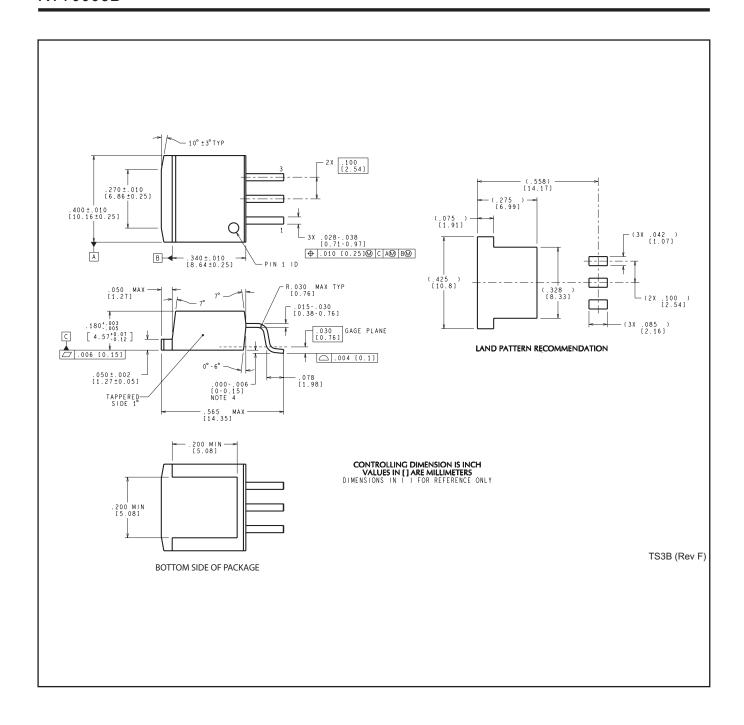


NOTES: A. All linear dimensions are in millimeters (inches).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC TO-261 Variation AA.

DCY (R-PDSO-G4)


PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil recommendations. Refer to IPC 7525 for stencil design considerations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity