

AFCI

2016

Ο

	2 3 4	
	PRODUCT NO. ROWS SIGNAL SIGNAL HIGH POWER CODE CODE DESCRIPTION E1 5 4 3 2 1 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 E2 F STD SIGNAL CONTACT	
А	I O I O G I 3 I - E O O SOO I LF G A G HEFFFFFF HE	
~		
	◄ 107.95	
	93.35	
В	► 4x 2.54 NOTE 6	В
	NOTE 4 $13x 6.35$	
Öē	I5.49 BSC NOTE 5	
Amphenol FCi		
Amp		
- C		C
	/ 3,54 M N,	
AFCI	NOTE 6, 7	
2016 A		
C C		
D	spec ref dr Vicking Liu 2016/03/23 projection MM size scale tolerance std TOLERANCES UNLESS chr Fancy Zhang 2016/07/20 Image: Chr Fancy Zhang State Stat	D
	ASMETT4.5 OTHERWISE SPECIFIED appr Pei-Ming Zheng 2016/07/20 product family Power Blade+ relievel Released	
	surface 1 linear $0.XX \pm 0.25$ $10106131 - E005001$	4
	ASME YI4.5 angular 0° ±2° cat. no. Product - Customer Drw sheet 2 of 3	

2	3	4	
HIGH POWER 11 P10 P9 P8 P7 P6 P5 P4 GHDHDHGHGHGHGHGHGHGH	+ P3 P2 P1 E2	CODEDESCRIPTIONFSTD SIGNAL CONTACTHDMFBL HIGH POWER CONTACT (3.43)HGSTD HIGH POWER CONTACT (3.43)	
		THO STD THOM FOWLY CONTACT (0.45)	A
- <u>4x 2.54</u>	<u>5.08</u> <u>13x 6.35</u>	$-2X \not 02.49 \pm 0.05$ $\Phi \not 00.10 \bigcirc V \cup$ NOTE 6 -5.21	В
0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V V	С
spec ref tolerance std ASME YI4.5 Surface Inear 0.X 0.XXX 0.XXX 0.XXX 4SME YI4.5	$\begin{array}{c c} \hline appr & Pei-Ming Zheng & 2016/07/20 & product for \\ \hline \hline 0 \\ \hline 25 \\ \hline 0 \\ \hline \hline 0 \\ \hline \hline$	tion MM size scale A 3 3:2 ecn no	D
2	3 PDS: Rev :A	STATUS:Released Printed: Jul 25, 2016	

Creo File - REV E - 2016-02-12

NOTES: I) "FCI", PART NUMBER AND DATE CODE TO BE MARKED ON THIS SURFACE. THE MARK CAN BE OMITTED IF THERE IS NOT ENOUGH SPACE ON THIS SURFACE. 2) MATERIALS: -HOUSING - GLASS FILLED WITH HIGH TEMP THERMOPLASTIC, UL94V-0. -SIGNAL CONTACT - COPPER ALLOY. -POWER CONTACT - HIGH CONDUCTIVITY COPPER ALLOY.

- 3) PLATING SPECIFICATION REFER TO FCI 10116351
- 4) DENOTES CONNECTOR KEEP OUT ZONE.
- 5) DATUM AND BASIC DIMENIONS WERE ESTABLISHED BY CUSTOMER.

2

- 6) ALL HOLE DIAMETERS ARE FINISHED HOLE SIZES.
- 7) I.15 \pm 0.025MM DRILLED HOLE PLATED WITH 0.00762MM MIN Sn OVER 0.0254-0.0762MM Cu PLATING TO ACHIEVE A 1.02 \pm 0.07MM HOLE.
- 8) PRODUCT SPECIFICATION REFER TO FCI GS-12-658. APPLICATION SPECIFICATION REFER TO FCI GS-20-141. PRODUCT PACKAGED IN TRAYS, REFER TO FCI GS-14-1502.
- 9) THE VOID CORING IN BETWEEN POWER MODULES, SIGNAL MODULES AND END MODULES ARE OPTIONAL AND THE SHAPE MAY BE DIFFERENT FOR OPTIMIZE THE MOLDING PROCESS. THE VOID CORING WILL NOT EFFECT TO PRODUCT FUNCTION.

spec ref				dr	Vicking Liu		2016/03/23	projection	MM	size	scale	
tolerance std				eng			2016/07/20			A 3	1:1	
ASME YI4.5	I O L E F	S UNLESS Specieled		Fancy Zhang		2016/07/20	\bigcirc - \subseteq -	→	ecn no -			
	OTHERWIJE JIECHT			appr	Pei-Ming Zheng		2016/07/20	product family	PowerBlade+	rel level	Released	
		0.X	± 0.50	A	shanal	• I 1	HP + 20S		0			rev
surface	linear	0.XX	\pm 0.25	Amphenol FCi	- Ι4ΠΓ Τ Ζυδ + -					-E005001		
		0.XXX	±0.10			+ VT	PF RECEPTACL	E	q			A
ASME YI4.5	angular	0°	$\pm 2^{\circ}$			cat.no	ο.	P	roduct – Customer	Drw	sheet 3 of	3
2						3	PDS: Rev	:A	STATUS:Released	Printe	ed: Jul 25, 2016	6

3

Creo File - REV E - 2016-02-12

В

Amphenol

AFCI

2016

 \bigcirc

D

А

В

С