

### 1.8V CONFIGURABLE BUFFER WITH ADDRESS-PARITY TEST

### IDT74SSTUA32866

### FEATURES:

- 1.8V Operation
- SSTL\_18 style clock and data inputs
- · Differential CLK input
- · Configurable as 25-bit 1:1 or 14-bit 1:2 registered buffer
- · Control inputs compatible with LVCMOS levels
- · Flow-through architecture for optimum PCB design
- Latch-up performance exceeds 100mA
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- · Checks parity on data inputs
- · Maximum operating frequency: 410MHz
- Optimized for DDR2 400 / 533 / 667 (PC2 3200 / 4300 / 5300) JEDEC R/C E, F, G, H, and J
- Available in 96-pin LFBGA package

### **APPLICATIONS:**

 Along with CSPUA877 DDR2 PLL, provides complete solution for DDR2 DIMMs

### **DESCRIPTION:**

This 25-bit 1:1 / 14-bit 1:2 configurable registered buffer is designed for 1.7V to 1.9V VDD operation. In the 1:1 pinout configuration, only one device per DIMM is requred to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive eighteen SDRAM loads. All inputs are SSTL\_18, except reset (RESET) and control (Cn) inputs, which are LVCMOS. All outputs are edge-controlled circuits optimized for unterminated DIMM loads, and meet SSTL\_18 specifications, except the open-drain error (QERR) output.

The SSTUA32866 operates from a differential clock (CLK and  $\overline{CLK}$ ). Data are registered at the crossing of CLK going high and  $\overline{CLK}$  going low. Parity is checked on the parity bit (PAR\_IN) input which arrives one cycle after the input data to which it applies. The  $\overline{QERR}$  output is open drain.

When used as a single device, the C0 and C1 inputs are tied low. In this configuration, the partial-parity-out (PPO) and  $\overline{QERR}$  signals are produced two clock cycles after the corresponding data output.

When used in pairs, the C0 input of the first register is tied low and the C0 input of the second register is tied high. The C1 input of both registers are tied high. The  $\overline{QERR}$  output of the first SSTUA32866 is left floating and the valid error information is latched on the  $\overline{QERR}$  output of the second SSTUA32866.

If an error occurs and the  $\overline{QERR}$  output is driven low, it stays latched low for two clock cycles or until  $\overline{RESET}$  is driven low. The DIMM-dependent signals (DODT, DCKE,  $\overline{DCS}$ , and  $\overline{CSR}$ ) are not included in the parity check.

The CO input controls the pinout configuration of the 1:2 pinout from register A configuration (when low) to register B configuration (when high). The C1 input controls the pinout configurationfrom 25-bit 1:1 (when low) to 14-bit 1:2 (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and should not be used.

The device supports low-power standby operation. When  $\overline{\text{RESET}}$  is low, the differential input recievers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when  $\overline{\text{RESET}}$  is low, all registers are reset and all outputs except  $\overline{\text{QERR}}$  are forced low. The LVCMOS  $\overline{\text{RESET}}$  and Cn inputs always must be held at a valid logic high or low level.

There are two VREF pins (A3 and T3). However, it is necessary to only connect one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor.

The device also supports low-power active operation by monitoring both system chip select ( $\overline{DCS}$  and  $\overline{CSR}$ ) inputs and will gate the Qn and PPO outputs from changing states when both  $\overline{DCS}$  and  $\overline{CSR}$  inputs are high. If either  $\overline{DCS}$  or  $\overline{CSR}$  input is low, the Qn and PPO outputs will function normally. Also, if the internal low power signal ( $\overline{LPS1}$ ) is high, the device will gate the  $\overline{QERR}$  output from changing states. If  $\overline{LPS1}$  is low, the  $\overline{QERR}$  output will function normally. The  $\overline{RESET}$  input has priority over the  $\overline{DCS}$  and  $\overline{CSR}$  control and when driven low will force the Qn and PPO outputs low, and the  $\overline{QERR}$  output high. If the  $\overline{DCS}$  control functionality is not desired, then the  $\overline{CSR}$  input can be hard-wired to ground, in which case the setup-time requirement for  $\overline{DCS}$  would be the same as for the other D data inputs. To control the low-power mode with  $\overline{DCS}$  only, then the  $\overline{CSR}$  input should be pulled up to VDD through a pullup resistor.

To ensure defined outputs from the register before a stable clock has been supplied,  $\overline{\text{RESET}}$  must be held in the low state during power up.

FUNCTIONAL BLOCK DIAGRAM (1:2) - A CONFIGURATION (POSITIVE LOGIC)



FUNCTIONAL BLOCK DIAGRAM (1:2) - B CONFIGURATION (POSITIVE LOGIC)



### PIN CONFIGURATION (TYPE A)

| 6 | QCKEB | Q2B | Q3B | QODTB | Q5B | Q6B | CO     | QCSB | NC  | Q8B | Q9B | Q10B | Q11B | Q12B | Q13B | Q14B |
|---|-------|-----|-----|-------|-----|-----|--------|------|-----|-----|-----|------|------|------|------|------|
| 5 | QCKEA | Q2A | Q3A | QODTA | Q5A | Q6A | C1     | QCSA | NC  | Q8A | Q9A | Q10A | Q11A | Q12A | Q13A | Q14A |
| 4 | VDD   | GND | Vdd | GND   | Vdd | GND | VDD    | GND  | Vdd | GND | Vdd | GND  | Vdd  | GND  | VDD  | Vdd  |
| 3 | VREF  | GND | Vdd | GND   | Vdd | GND | VDD    | GND  | Vdd | GND | VDD | GND  | Vdd  | GND  | Vdd  | VREF |
| 2 | PPO   | DNU | DNU | QERR  | DNU | DNU | RESET  | DCS  | CSR | DNU | DNU | DNU  | DNU  | DNU  | DNU  | DNU  |
| 1 | DCKE  | D2  | D3  | DODT  | D5  | D6  | PAR_IN | CLK  | CLK | D8  | D9  | D10  | D11  | D12  | D13  | D14  |
|   | А     | В   | С   | D     | Е   | F   | G      | Н    | J   | К   | L   | М    | Ν    | Р    | R    | Т    |

96-PIN LFBGA 1:2 REGISTER (TYPE A, FRONTSIDE) TOP VIEW

## PIN CONFIGURATION (TYPE B)

| 6 | Q1B  | Q2B | Q3B | Q4B  | Q5B | Q6B | CO     | QCSB | NC  | Q8B | Q9B | Q10B | QODTB | Q12B | Q13B | QCKEB |
|---|------|-----|-----|------|-----|-----|--------|------|-----|-----|-----|------|-------|------|------|-------|
| 5 | Q1A  | Q2A | Q3A | Q4A  | Q5A | Q6A | C1     | QCSA | NC  | Q8A | Q9A | Q10A | QODTA | Q12A | Q13A | QCKEA |
| 4 | Vdd  | GND | Vdd | GND  | Vdd | GND | VDD    | GND  | Vdd | GND | Vdd | GND  | VDD   | GND  | Vdd  | Vdd   |
| 3 | VREF | GND | Vdd | GND  | Vdd | GND | VDD    | GND  | Vdd | GND | VDD | GND  | VDD   | GND  | Vdd  | VREF  |
| 2 | PPO  | DNU | DNU | QERR | DNU | DNU | RESET  | DCS  | CSR | DNU | DNU | DNU  | DNU   | DNU  | DNU  | DNU   |
| 1 | D1   | D2  | D3  | D4   | D5  | D6  | PAR_IN | CLK  | CLK | D8  | D9  | D10  | DODT  | D12  | D13  | DCKE  |
|   | Α    | В   | С   | D    | Е   | F   | G      | Н    | J   | К   | L   | М    | N     | Р    | R    | T     |

96-PIN LFBGA 1:2 REGISTER (TYPE B, BACKSIDE) TOP VIEW

BV CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST

**COMMERCIAL TEMPERATURE RANGE** 

## FUNCTIONAL BLOCK DIAGRAM (1:1)





**BOTTOM VIEW** 

### **96 BALL LFBGA PACKAGE ATTRIBUTES**

### 96-PIN LFBGA 1:1 REGISTER TOP VIEW

\*Rows 3 and 4 are reserved for VDD and GND.

| 6 | DNU  | Q15 | Q16 | DNU  | Q17 | Q18 | CO     | DNU | NC  | Q19 | Q20 | Q21 | Q22 | Q23 | Q24 | Q25  |
|---|------|-----|-----|------|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 5 | QCKE | Q2  | Q3  | QODT | Q5  | Q6  | C1     | QCS | NC  | Q8  | Q9  | Q10 | Q11 | Q12 | Q13 | Q14  |
| 4 | VDD  | GND | Vdd | GND  | Vdd | GND | VDD    | GND | Vdd | GND | Vdd | GND | Vdd | GND | Vdd | Vdd  |
| 3 | VREF | GND | Vdd | GND  | Vdd | GND | VDD    | GND | Vdd | GND | Vdd | GND | Vdd | GND | VDD | VREF |
| 2 | PPO  | D15 | D16 | QERR | D17 | D18 | RESET  | DCS | CSR | D19 | D20 | D21 | D22 | D23 | D24 | D25  |
| 1 | DCKE | D2  | D3  | DODT | D5  | D6  | PAR_IN | CLK | CLK | D8  | D9  | D10 | D11 | D12 | D13 | D14  |
|   | А    | В   | С   | D    | Е   | F   | G      | Н   | J   | К   | L   | М   | Ν   | Р   | R   | Т    |
|   |      |     |     |      |     |     |        |     |     |     |     |     |     |     |     |      |

## **PIN CONFIGURATION**

SIDE VIEW

### FUNCTION TABLE (EACH FLIP-FLOP) (1)

|       |               |               | Inputs        |               | Qx             | QTCSX                         | QODTx, QCKEx                  |                               |
|-------|---------------|---------------|---------------|---------------|----------------|-------------------------------|-------------------------------|-------------------------------|
| RESET | DCS           | CSR           | CLK           | CLK           | Dx, DODT, DCKE | Outputs                       | Output                        | Outputs                       |
| н     | L             | L             | ↑             | $\downarrow$  | L              | L                             | L                             | L                             |
| н     | L             | L             | ↑             | $\downarrow$  | Н              | Н                             | L                             | н                             |
| н     | L             | L             | L or H        | L or H        | Х              | Q <sub>0</sub> <sup>(2)</sup> | Q <sub>0</sub> <sup>(2)</sup> | Q <sub>0</sub> <sup>(2)</sup> |
| н     | L             | Н             | ↑             | $\downarrow$  | L              | L                             | L                             | L                             |
| н     | L             | Н             | ↑             | $\downarrow$  | Н              | Н                             | L                             | н                             |
| н     | L             | Н             | L or H        | L or H        | Х              | Q <sub>0</sub> <sup>(2)</sup> | Q <sub>0</sub> <sup>(2)</sup> | Q <sub>0</sub> <sup>(2)</sup> |
| Н     | Н             | L             | Ŷ             | $\downarrow$  | L              | L                             | Н                             | L                             |
| Н     | Н             | L             | Ŷ             | $\downarrow$  | Н              | Н                             | Н                             | Н                             |
| Н     | Н             | L             | L or H        | L or H        | Х              | Q <sub>0</sub> <sup>(2)</sup> | Q <sub>0</sub> <sup>(2)</sup> | Q <sub>0</sub> <sup>(2)</sup> |
| Н     | Н             | Н             | Ŷ             | $\downarrow$  | L              | Q <sub>0</sub> <sup>(2)</sup> | Н                             | L                             |
| Н     | Н             | Н             | Ŷ             | $\downarrow$  | Н              | Q <sub>0</sub> <sup>(2)</sup> | Н                             | Н                             |
| Н     | Н             | Н             | L or H        | L or H        | Х              | Q <sub>0</sub> <sup>(2)</sup> | Q <sub>0</sub> <sup>(2)</sup> | Q <sub>0</sub> <sup>(2)</sup> |
| L     | X or Floating  | L                             | L                             | L                             |

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

 $\uparrow$  = LOW to HIGH

 $\downarrow$  = HIGH to LOW

2. Output level before the indicated steady-state conditions were established.

### PARITY AND STANDBY FUNCTION TABLE<sup>(1)</sup>

|       |               |               | Inp           | outs          | -                                 | -                     | Out                | puts                  |
|-------|---------------|---------------|---------------|---------------|-----------------------------------|-----------------------|--------------------|-----------------------|
| RESET | DCS           | CSR           | CLK           | CLK           | <b>Σ</b> of Inputs = H (D1 - D25) | PAR_IN <sup>(2)</sup> | PPO <sup>(3)</sup> |                       |
| Н     | L             | Х             | ↑             | $\downarrow$  | Even                              | L                     | L                  | Н                     |
| Н     | L             | Х             | ↑             | $\downarrow$  | Odd                               | L                     | Н                  | L                     |
| Н     | L             | х             | ↑ (           | $\downarrow$  | Even                              | Н                     | Н                  | L                     |
| Н     | L             | х             | ↑ (           | $\downarrow$  | Odd                               | Н                     | L                  | Н                     |
| Н     | Н             | L             | ↑             | $\downarrow$  | Even                              | L                     | L                  | Н                     |
| Н     | Н             | L             | ↑ (           | $\downarrow$  | Odd                               | L                     | Н                  | L                     |
| Н     | Н             | L             | ↑             | $\downarrow$  | Even                              | Н                     | Н                  | L                     |
| Н     | Н             | L             | ↑             | $\downarrow$  | Odd                               | Н                     | L                  | Н                     |
| Н     | Н             | Н             | ↑             | $\downarrow$  | Х                                 | х                     | PPO <sub>0</sub>   | $\overline{QERR}_{O}$ |
| Н     | х             | Х             | L or H        | L or H        | Х                                 | х                     | PPO <sub>0</sub>   | $\overline{QERR}_{0}$ |
| L     | X or Floating                     | X or Floating         | L                  | н                     |

### NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

 $\uparrow$  = LOW to HIGH

 $\downarrow$  = HIGH to LOW

2. Data Inputs = D2, D3, D5, D6, D8 - D25 when C0 = 0 and C1 = 0.

Data Inputs = D2, D3, D5, D6, D8 - D14 when C0 = 0 and C1 = 1.

Data Inputs = D1 - D6, D8 - D10, D12, D13 when C0 = 1 and C1 = 1.

3. PAR\_IN arrives one clock cycle (C0 = 0), or two clock cycles (C0 = 1), after the data to which it applies.

4. This transition assumes QERR is HIGH at the crossing of CLK going HIGH and CLK going LOW. If QERR is LOW, it stays latched LOW for two clock cycles or until RESET is driven LOW.

**COMMERCIAL TEMPERATURE RANGE** 

## LOGIC DIAGRAM (1:1)



Parity Logic Diagram for 1:1 Register - A Configuration (Positive Logic); C0 = 0, C1 = 0

**COMMERCIAL TEMPERATURE RANGE** 

## LOGIC DIAGRAM (1:2)



Parity Logic Diagram for 1:2 Register - A Configuration (Positive Logic); C0 = 0, C1 = 1

### **1.8V CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST**

## ABSOLUTE MAXIMUM RATINGS (1)

| Symbol              | Description                 |          | Max.             | Unit |
|---------------------|-----------------------------|----------|------------------|------|
| Vdd                 | Supply Voltage Range        |          | -0.5 to 2.5      | V    |
| VI <sup>(2,3)</sup> | Input Voltage Range         |          | -0.5 to 2.5      | V    |
| V0 <sup>(2,3)</sup> | Output Voltage Range        |          | -0.5 to VDD +0.5 | V    |
| Ік                  | Input Clamp Current VI < 0  |          | ±50              | mA   |
|                     |                             | VI > VDD |                  |      |
| Іок                 | Output Clamp Current Vo < 0 |          | ±50              | mA   |
|                     |                             | Vo > Vdd |                  |      |
| lo                  | Continuous Output Cur       | rent,    | ±50              | mA   |
|                     | Vo = 0 to VDD               |          |                  |      |
| Vdd                 | Continuous Current thro     | ougheach | ±100             | mA   |
|                     | VDD or GND                  |          |                  |      |
| Tstg                | Storage Temperature R       | ange     | -65 to +150      | °C   |

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. The input and output negative voltage ratings may be exceeded if the ratings of the  $I\!/P$  and O/P clamp current are observed.

3. This value is limited to 2.5V maximum.

### **TERMINAL FUNCTIONS (ALL PINS)**

| Terminal | Electrical         |                                                                                                                            |
|----------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| Name     | Characteristics    | Description                                                                                                                |
| GND      | Ground Input       | Ground                                                                                                                     |
| Vdd      | 1.8V nominal       | Power Supply Voltage                                                                                                       |
| VREF     | 0.9V nominal       | Input Reference Voltage                                                                                                    |
| CLK      | Differential Input | Positive Master Clock Input                                                                                                |
| CLK      | Differential Input | Negative Master Clock Input                                                                                                |
| Cx       | LVCMOS Input       | Configuration Control Inputs                                                                                               |
| RESET    | LVCMOS Input       | Asynchronous Reset Input. Resets registers and disables $V_{REF}$ data and clock differential-input receivers.             |
| CSR, DCS | SSTL_18Input       | Chip Select Inputs. Disables outputs Dx switching when both inputs are HIGH.                                               |
| Dx       | SSTL_18 Input      | Data Input. Clocked in on the crossing of the rising edge of CLK and the falling edge of $\overline{\text{CLK}}$ .         |
| DODT     | SSTL_18 Input      | The outputs of this register bit will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls |
| DCKE     | SSTL_18 Input      | The outputs of this register bit will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls |
| Qx       | 1.8V CMOS          | Data Outputs that are suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls                        |
| QCSx     | 1.8V CMOS          | Data Output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls                 |
| QODTx    | 1.8V CMOS          | Data Output that will not be suspended by the $\overline{\text{DCS}}$ and $\overline{\text{CSR}}$ controls                 |
| QCKEx    | 1.8V CMOS          | Data Output that will not be suspended by the $\overline{DCS}$ and $\overline{CSR}$ controls                               |
| PAR_IN   | SSTL_18 Input      | Parity Input. Clocked on the rising edge of CLK one cycle after corresponding data input.                                  |
| QERR     | Open Drain Output  | Output Error bit, generated one cycle after the corresponding data output                                                  |
| PPO      | 1.8V CMOS          | Partial Parity Output. Indicates ODD parity of Data Inputs and Parity In.                                                  |

### **MODE SELECT**

| Co | C1 | Device Mode                         |
|----|----|-------------------------------------|
| 0  | 0  | 1:1 25-bit to 25-bit                |
| 0  | 1  | 1:214-bit to 28-bit, Front (Type A) |
| 1  | 0  | Reserved                            |
| 1  | 1  | 1:214-bit to 28-bit, Back (Type B)  |

FFER WITH ADDRESS-PARITY TEST

## OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$ (1,2)

| Symbol | Parameter                                        |                                                                  | Min.        | Тур.      | Max.       | Unit |
|--------|--------------------------------------------------|------------------------------------------------------------------|-------------|-----------|------------|------|
| Vdd    | Supply Voltage                                   |                                                                  | 1.7         | —         | 1.9        | V    |
| VREF   | Reference Voltage                                |                                                                  | 0.49 * Vdd  | 0.5 * Vdd | 0.51 * VDD | V    |
| Vtt    | Termination Voltage                              |                                                                  | VREF-40mV   | Vref      | VREF+ 40mV | V    |
| Vi     | Input Voltage                                    |                                                                  | 0           | _         | Vdd        | V    |
| Vін    | AC High-Level Input Voltage                      |                                                                  | VREF+ 250mV | —         | —          |      |
| Vi∟    | AC Low-Level Input Voltage                       | Data Inputs, $\overline{\text{CSR}}$ , $\overline{\text{DCS}}$ , | —           | —         | VREF-250mV | V    |
| Vін    | DC High-Level Input Voltage                      | PAR_IN                                                           | VREF+ 125mV | —         | —          |      |
| VIL    | DC Low-Level Input Voltage                       |                                                                  | _           | —         | VREF-125mV |      |
| Vін    | High-Level Input Voltage                         | RESET, Cx                                                        | 0.65 * Vdd  | —         | —          | V    |
| Vi∟    | Low-Level Input Voltage                          | RESET, Cx                                                        | —           | —         | 0.35 * Vdd | V    |
| VICR   | Common Mode Input Voltage                        | CLK, <u>CLK</u>                                                  | 0.675       | —         | 1.125      | V    |
| Vid    | Differential Input Voltage                       | clk, <u>CLK</u>                                                  | 600         | _         | —          | mV   |
| Іон    | High-Level Output Current Data Outputs, PPO      |                                                                  | —           | —         | -8         | mA   |
| IOL    | Low-Level Output Current Data Outputs, PPO, QERR |                                                                  |             | _         | 8          |      |
| TA     | Operating Free-Air Temperature                   | 9                                                                | 0           | _         | 70         | °C   |

NOTES:

1. The RESET and Cx inputs of the device must be held at valid levels (not floating) to ensure proper device operation.

2. The differential inputs must not be floating unless  $\overline{\text{RESET}}$  is LOW.

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA =  $0^{\circ}$ C to +70°C, VDD = 1.8V ± 0.1V

| Symbol | Parameter                 | Test Conditions                                                         |          | Min. | Тур. | Max.     | Unit     |
|--------|---------------------------|-------------------------------------------------------------------------|----------|------|------|----------|----------|
| Vон    | Output HIGH Voltage       | Iон = -6 mA                                                             |          | 1.2  | —    |          | V        |
| Vol    | Output LOW Voltage        | IOL = 6 mA                                                              | —        | —    | 0.5  | V        |          |
| li     | All Inputs <sup>(1)</sup> | VI = VDD or GND; VDD = 1.9V                                             |          | —    | —    | ±5       | μA       |
| IDD    | Static Standby            | IO = 0, VDD = 1.9V, $\overline{\text{RESET}}$ = GND                     |          | _    | _    | 100      | μA       |
|        | Static Operating          | IO = 0, VDD = 1.9V, $\overline{RESET}$ = VDD, VI = VIH (AC) or V        | IL (AC)  | —    | _    | 40       | mA       |
| IDDD   | Dynamic Operating         | IO = 0, VDD = 1.8V, $\overline{\text{RESET}}$ = VDD, VI = VIH (AC) or V | —        | —    | _    | µA/Clock |          |
|        | (Clock Only)              | CLK and $\overline{\text{CLK}}$ Switching 50% Duty Cycle.               |          |      |      |          | MHz      |
|        |                           | $IO = 0, VDD = 1.8V, \overline{RESET} = VDD,$                           | 1:1 Mode | —    | —    | _        |          |
|        | Dynamic Operating         | VI = VIH (AC) or VIL (AC), CLK and $\overline{CLK}$ Switching at        |          |      |      |          | µA/Clock |
|        | (Per Each Data Input)     | 50% Duty Cycle. One Data Input Switching at                             | 1:2 Mode | _    | —    | —        | MHz/Data |
|        |                           | Half Clock Frequency, 50% Duty Cycle.                                   |          |      |      |          | Input    |
|        | Data Inputs, CSR, PAR_IN  |                                                                         |          | 2.5  | —    | 3.5      |          |
| Сі     | CLK and CLK               | $V_{ICR} = 0.9V, V_{ID} = 600mV$                                        |          | 2    | _    | 3        | pF       |
|        | RESET                     | Vi = VDD or GND                                                         |          | —    | —    | —        |          |

NOTE:

1. Each  $V_{\text{REF}}$  pin (A3, T3) should be tested independently, with the other pin open circuit.

# TIMING REQUIREMENTS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE

|                         |                   |                                                                                                                                                                                                                                        | VDD = 1.8 | V ± 0.1V |      |
|-------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|------|
| Symbol                  | Parameter         |                                                                                                                                                                                                                                        | Min.      | Max.     | Unit |
| <b>fCLOCK</b>           | Clock Frequence   | су                                                                                                                                                                                                                                     |           | 410      | MHz  |
| tw                      | Pulse Duration    | , CLK, CLK HIGH or LOW                                                                                                                                                                                                                 | 1         |          | ns   |
| tact <sup>(1,2)</sup>   | Differential Inpu | ts Active Time                                                                                                                                                                                                                         |           | 10       | ns   |
| tinact <sup>(1,3)</sup> | Differential Inpu | ts Inactive Time                                                                                                                                                                                                                       |           | 15       | ns   |
|                         |                   | $\overline{\text{DCS}}$ before CLK <sup>↑</sup> , $\overline{\text{CLK}}\downarrow$ , $\overline{\text{CSR}}$ HIGH; $\overline{\text{CSR}}$ before CLK <sup>↑</sup> , $\overline{\text{CLK}}\downarrow$ , $\overline{\text{DCS}}$ HIGH | 0.7       |          |      |
| ts∪                     | Setup Time        | $\overline{\text{DCS}}$ before CLK $\uparrow$ , $\overline{\text{CLK}}\downarrow$ , $\overline{\text{CSR}}$ LOW                                                                                                                        | 0.5       | -        | ns   |
|                         |                   | DODT, DCKE, and data before CLK $\uparrow$ , $\overline{CLK}\downarrow$                                                                                                                                                                | 0.5       | _        |      |
|                         |                   | PAR_IN before CLK $\uparrow$ , $\overline{CLK}\downarrow$                                                                                                                                                                              | 0.5       | —        |      |
| н                       | Hold Time         | $\overline{DCS}$ , DODT, DCKE, and data after CLK $\uparrow$ , $\overline{CLK} \downarrow$                                                                                                                                             | 0.5       | _        | ns   |
|                         |                   | PAR_IN after CLK $\uparrow$ , $\overline{CLK}\downarrow$                                                                                                                                                                               | 0.5       | _        |      |

NOTES:

1. This parameter is not production tested.

2. Data and VREF inputs must be low a minimum time of tACT max, after  $\overline{\text{RESET}}$  is taken HIGH.

3. Data, VREF, and clock inputs must be held at valid levels (not floating) a minimum time of tINACT max, after RESET is taken LOW.

# SWITCHING CHARACTERISTICS OVER RECOMMENDED FREE-AIR OPERATING RANGE (UNLESS OTHERWISE NOTED) <sup>(1)</sup>

|                         |                                                               | VDD = 1            | .8V ± 0.1V         |      |
|-------------------------|---------------------------------------------------------------|--------------------|--------------------|------|
| Symbol                  | Parameter                                                     | Min                | Max.               | Unit |
| fMAX                    |                                                               | 410                | —                  | MHz  |
| tPDM <sup>(2)</sup>     | CLK and $\overline{\text{CLK}}$ to Q                          | 1.2                | 1.9                | ns   |
| tPDMSS <sup>(2,3)</sup> | CLK and $\overline{\text{CLK}}$ to Q (simultaneous switching) | _                  | 2                  | ns   |
| tRPHL                   | RESET to Q                                                    | _                  | 3                  | ns   |
| dV/dt_r                 | Output slew rate from 20% to 80%                              | 1                  | 4                  | V/ns |
| dV/dt_f                 | Output slew rate from 20% to 80%                              | 1                  | 4                  | V/ns |
| dV/dt_ $\Delta^{(4)}$   | Output slew rate from 20% to 80%                              | _                  | 1                  | V/ns |
| tPD                     | CLK and $\overline{\text{CLK}}$ to PPO                        | 0.5 <sup>(5)</sup> | 1.8 <sup>(5)</sup> | ns   |
| <b>t</b> PLH            | CLK and $\overline{\text{CLK}}$ to QERR                       | 1.2 <sup>(5)</sup> | 3 <sup>(5)</sup>   | ns   |
| <b>t</b> PHL            | CLK and $\overline{\text{CLK}}$ to QERR                       | 1 <sup>(5)</sup>   | 2.4 <sup>(5)</sup> | ns   |
| tRPHL                   | RESET to PPO                                                  | _                  | 3                  | ns   |
| tRPLH                   | RESET to QERR                                                 | _                  | 3                  | ns   |

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS.

2. Includes 350ps of test load transmission line delay.

3. This parameter is not production tested.

4. Difference between dV/dt\_r (rising edge rate) and  $\,dV/dt_f$  (falling edge rate).

5. For reference only. Final values to be determined.

DT74SSTUA32866 1.8V CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST

## **REGISTER TIMING**



Timing Diagram for SSTUA32866 Used as a Single Device; C0 = 0, C1 = 0

### **REGISTER TIMING**



Timing Diagram for the First SSTUA32866 (1:2 Register-A Configuration) Device Used in a Pair; C0 = 0, C1 = 1

.8V CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST

## **REGISTER TIMING**



Timing Diagram for the First SSTUA32866 (1:2 Register-B Configuration) Device Used in a Pair; C0 = 1, C1 = 1

### TEST CIRCUITS AND WAVEFORMS ( $VDD = 1.8V \pm 0.1V$ )



Voltage Waveforms - Setup and Hold Times

### NOTES:

- 1. CL includes probe and jig capacitance.
- 2. IDD tested with clock and data inputs held at VDD or GND, and IO = 0mA
- 3. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$ 10MHz, Zo = 50 $\Omega$ , input slew rate = 1 V/ns ±20% (unless otherwise specified). 4. The outputs are measured one at a time with one transition per measurement.
- 5. VTT = VREF = VDD/2
- 6. VIH = VREF + 250mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS input.
- 7. VIL = VREF 250mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS input.
- 8. VID = 600mV.
- 9. tPLH and tPHL are the same as tPDM.

V CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST

### TEST CIRCUITS AND WAVEFORMS ( $VDD = 1.8V \pm 0.1V$ )



Load Circuit: High-to-Low Slew-Rate Adjustment



Voltage Waveforms: High-to-Low Slew-Rate Adjustment



Load Circuit: Low-to-High Slew-Rate Adjustment



Voltage Waveforms: Low-to-High Slew-Rate Adjustment

### NOTES:

1. CL includes probe and jig capacitance.

2. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$ 10MHz, Zo = 50 $\Omega$ , input slew rate = 1 V/ns ±20% (unless otherwise specified).

1.8V CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST

### TEST CIRCUITS AND WAVEFORMS (VDD = 1.8V ± 0.1V)



### Load Circuit: **QERR** Output



Load Circuit: Partial-Parity-Out Load Circuit



Voltage Waveforms - Open-Drain Output LOW-to-HIGH Transition Time with Respect to Clock Inputs



Voltage Waveforms - Propagation Delay Times with with Respect to Clock Inputs



Voltage Waveforms - Propagation Delay Times with with Respect to Reset Input









### NOTES:

1. CL includes probe and jig capacitance.

<sup>2.</sup> All input pulses are supplied by generators having the following characteristics: PRR  $\leq$ 10MHz, Zo = 50 $\Omega$ , input slew rate = 1 V/ns ±20% (unless otherwise specified).

### **ORDERING INFORMATION**



### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information** 

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>