

The future of Analog to Technic

# DESCRIPTION

The EV1400-C-01A demonstrates MPS's MP1400, a monolithic negative DCDC power converter with built-in internal power MOSFET. It offers a very compact solution to achieve up to 600mA continuous output current depending on input-voltage to output-voltage ratio. The output voltage can be regulated from -0.9V to -6V.

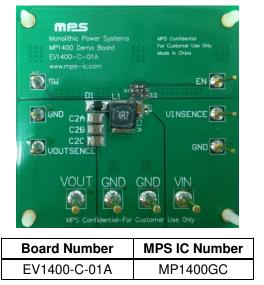
The 1500 kHz switching frequency allows for smaller external components producing a compact solution for a wide range of load currents.

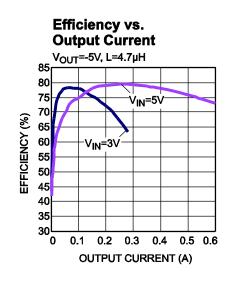
Fault condition protection includes cycle-bycycle current limiting and thermal shutdown. The MP1400 is available in a 0.8mm x 1.6mm 8-ball CSP package.

# **ELECTRICAL SPECIFICATION**

| Parameter      | Symbol           | Value   | Units |
|----------------|------------------|---------|-------|
| Input Voltage  | V <sub>IN</sub>  | 2.7 – 7 | V     |
| Output Voltage | V <sub>OUT</sub> | -5      | V     |
| Output Current | I <sub>OUT</sub> | 0.6     | А     |

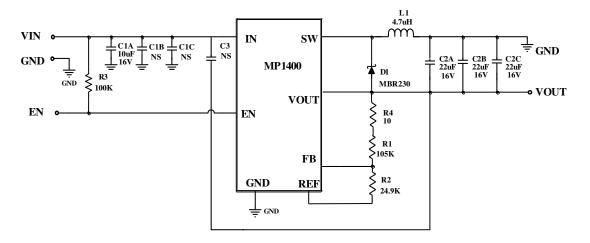
# FEATURES


- Wide 2.7V to 7V Operating Input Range
- Output Adjustable from -0.9V to -6V
- Up to 600mA Output Current
- 300mΩ High Side MOSFET On Resistance
- Default 1.5MHz Switching Frequency
- Ground Reference Enable
- Cycle-by-Cycle Over Current Protection
- Short Circuit Protect with Hiccup Mode
- Output Voltage Discharge
- Output Over Voltage Protection
- Available in a 0.8mm x 1.6mm 8-ball CSP Package


# **APPLICATIONS**

- General Negative Voltage
- HDD
- Small OLED Panel

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology", are Registered Trademarks of Monolithic Power Systems, Inc.


### **EV1400-J-01A EVALUATION BOARD**



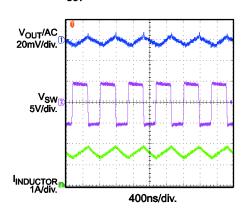


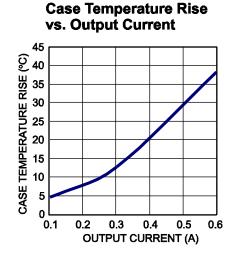


# **EVALUATION BOARD SCHEMATIC**

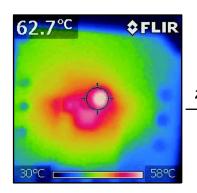


### **EV1400-J-00A BILL OF MATERIALS**

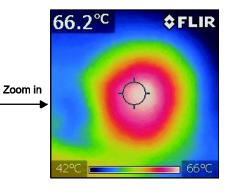

| Qty | RefDes          | Value    | Description                       | Package             | Manufacturer | Manufacturer P/N   |
|-----|-----------------|----------|-----------------------------------|---------------------|--------------|--------------------|
| 1   | C1A             | 10µF     | Ceramic Cap.,<br>16V, X7R         | 1206                | muRata       | GRM31CR71C106KAC7L |
| 3   | C1B,<br>C1C, C3 | NS       |                                   |                     |              |                    |
| 3   | C2A,<br>C2B,C2C | 22µF     | Ceramic Cap.,<br>10V, X5R         | 1210                | muRata       | GRM32ER61C226KE20L |
| 1   | R1              | 105K     | Thick Film Res., 1%               | 0603                | ROYAL        | RL0603FR-07105KL   |
| 1   | R2              | 24.9K    | Thick Film Res., 1%               | 0603                | ROYAL        | RL0603FR-0724K9L   |
| 1   | R3              | 100K     | Thick Film Res., 5%               | 0603                | ROYAL        | RL0603FR-07100KL   |
| 1   | R4              | 10Ω      | Thick Film Res., 1%               | 0603                | ROYAL        | RL0603FR-0710RL    |
|     | D1              | Schottky | 2A30V                             | SOD-123             | Onsemi       | MBR230LSFT1        |
| 1   | L1              | 4.7µH    | Inductor,<br>DCR=35mΩ,<br>Is=3.9A | SMD                 | Wurth        | 7447789004         |
| 1   | U1              | MP1400-C | Buck-Boost<br>Convert             | CSP_<br>0.8mm*1.6mm | MPS          | MP1400GC           |




# **EVB TEST RESULTS**


Performance waveforms are tested on the evaluation board.  $V_{IN}$  = 5V,  $V_{OUT}$  = -5V, L = 4.7µH, T<sub>A</sub> = 25°C, unless otherwise noted.

Output Ripple






#### Infrared Thermal Image I<sub>OUT</sub>=0.6A



Infrared Thermal Image I<sub>OUT</sub>=0.6A





# PRINTED CIRCUIT BOARD LAYOUT

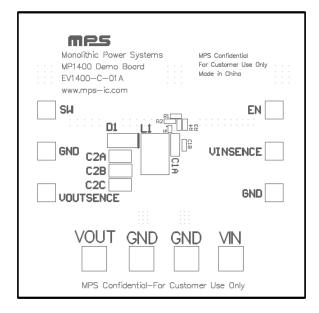



Figure 1—Top Silk Layer

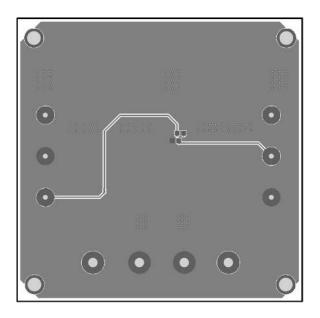



Figure 3—Bottom Layer

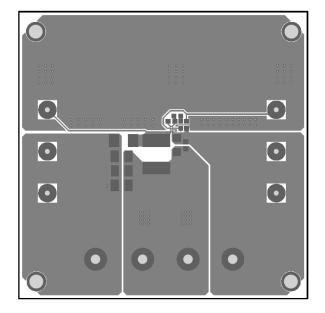



Figure 2—Top Silk Layer

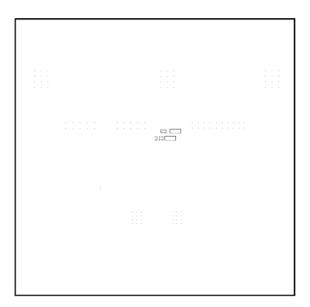



Figure 4—Bottom Silk Layer



# QUICK START GUIDE

- 1. Connect the positive and negative terminals of the load to the VOUT and GND pins, respectively.
- 2. Preset the power supply output between 2.7V and 7V, and then turn off the power supply.
- 3. Connect the positive and negative terminals of the power supply output to the VIN and GND pins, respectively.
- 4. Turn the power supply on. The board will automatically start up.

**NOTICE:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.