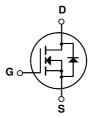


April 2000

FQPF4N60

600V N-Channel MOSFET

General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.

Features

- 2.6A, 600V, $R_{DS(on)} = 2.2\Omega$ @V_{GS} = 10 V Low gate charge (typical 15 nC)
- Low Crss (typical 8.0 pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter		FQFP4N60	Units
V _{DSS}	Drain-Source Voltage		600	V
I _D	Drain Current - Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		2.6	Α
			1.64	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	10.4	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	260	mJ
I _{AR}	Avalanche Current	(Note 1)	2.6	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	3.6	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P_D	Power Dissipation (T _C = 25°C)		36	W
	- Derate above 25°C		0.29	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		3.47	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	600			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 2	5°C	0.6		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V			10	μΑ
		V _{DS} = 480 V, T _C = 125°C			100	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Cha	aracteristics		·			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 1.3 A		1.77	2.2	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, I_D = 1.3 \text{ A}$ (No	te 4)	3.1		S
C _{iss}	Input Capacitance Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		520 70	670 90	pF pF
C _{rss}	Reverse Transfer Capacitance	1 = 1.0 11112				
9188	Trovorco Tranolor Supusitantes			8	11	pF
	ing Characteristics			8	11	pF
Switch	,	V 200 V L 44A		13	35	pF
Switch	ing Characteristics	V _{DD} = 300 V, I _D = 4.4 A,				
Switch	ing Characteristics Turn-On Delay Time	$V_{DD} = 300 \text{ V}, I_{D} = 4.4 \text{ A},$ $R_{G} = 25 \Omega$		13	35	ns
Switch	ing Characteristics Turn-On Delay Time Turn-On Rise Time	$R_G = 25 \Omega$		13 45	35 100	ns ns
Switch td(on) tr td(off)	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	$R_G = 25 \ \Omega$ (Note		13 45 25	35 100 60	ns ns
Switch t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25 \Omega$		13 45 25 35	35 100 60 80	ns ns ns
Switch td(on) tr td(off) tf Qg Qgs	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_{G} = 25~\Omega \label{eq:reconstruction}$ (Note $V_{DS} = 480~V,~I_{D} = 4.4~A,~V_{GS} = 10~V$		13 45 25 35 15	35 100 60 80 20	ns ns ns ns
Switch td(on) tr td(off) tf Qg Qgs Qgd	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25~\Omega \label{eq:Note}$ $V_{DS} = 480~V,~I_{D} = 4.4~A,$ $V_{GS} = 10~V \label{eq:Note}$ (Note		13 45 25 35 15 3.4	35 100 60 80 20	ns ns ns ns
Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G}=25~\Omega \label{eq:RG}$ (Note $V_{DS}=480~V,~I_{D}=4.4~A,~V_{GS}=10~V \label{eq:VDS}$ (Note and Maximum Ratings		13 45 25 35 15 3.4	35 100 60 80 20 	ns ns ns ns nC nC
Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Maximum Continuous Drain-Source Dice	$R_G = 25 \Omega$ (Note $V_{DS} = 480 \text{ V}, I_D = 4.4 \text{ A}, V_{GS} = 10 \text{ V}$ (Note and Maximum Ratings) and Forward Current	 	13 45 25 35 15 3.4 7.1	35 100 60 80 20 	ns ns ns ns nC nC
Switch td(on) tr td(off) tf Qg Qgs Qgd Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Maximum Continuous Drain-Source Diode Fallows Time Maximum Pulsed Drain-Source Diode Fallows Times Total Gate Charge Total Gate Charge	$R_{G}=25~\Omega$ (Note $V_{DS}=480~V, I_{D}=4.4~A,$ $V_{GS}=10~V$ (Note and Maximum Ratings ode Forward Current		13 45 25 35 15 3.4 7.1	35 100 60 80 20 2.6 10.4	ns ns ns ns nC nC
Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Maximum Continuous Drain-Source Dice	$R_G = 25 \Omega$ (Note $V_{DS} = 480 \text{ V}, I_D = 4.4 \text{ A}, V_{GS} = 10 \text{ V}$ (Note and Maximum Ratings) and Forward Current	 	13 45 25 35 15 3.4 7.1	35 100 60 80 20 	ns ns ns nc nC nC A

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 71mH, I $_{AS}$ = 2.6A, V $_{DD}$ = 50V, R $_{G}$ = 25 Ω , Starting T $_{J}$ = 25°C 3. I $_{SD}$ ≤ 4.4A, di/dt ≤ 200A/µs, V $_{DD}$ ≤ BV $_{DSS}$, Starting T $_{J}$ = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature

©2000 Fairchild Semiconductor International Rev. A, April 2000

Typical Characteristics

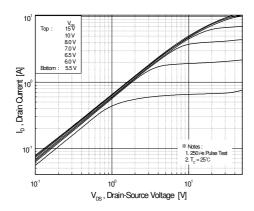


Figure 1. On-Region Characteristics

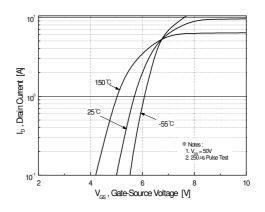


Figure 2. Transfer Characteristics

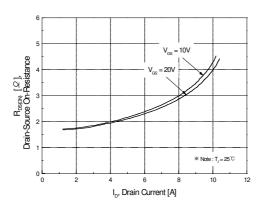


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

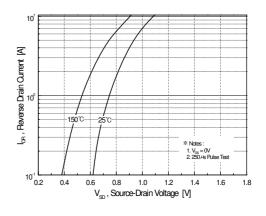


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

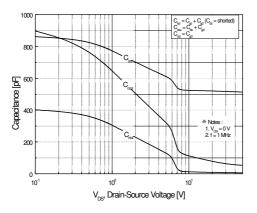


Figure 5. Capacitance Characteristics

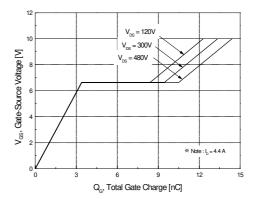


Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

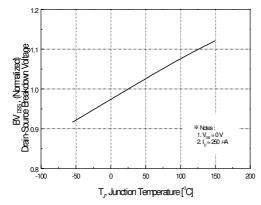
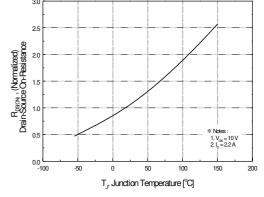



Figure 7. Breakdown Voltage Variation vs. Temperature Figure 8. On-Resistance Variation vs. Temperature

Coperation in Tris Area is Limited by P count in Tris In Tris 100 jus in 100 ms in 100

Figure 9. Maximum Safe Operating Area

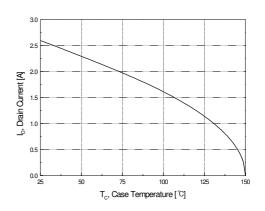
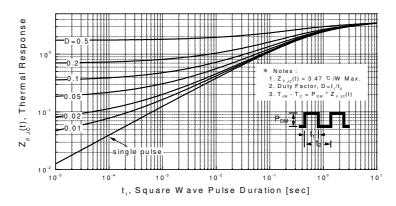
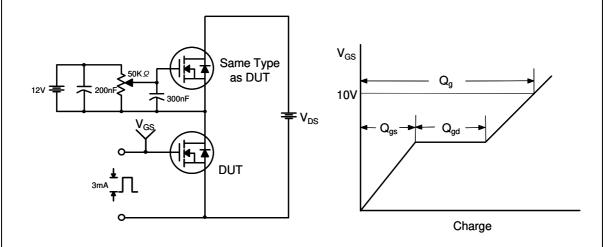
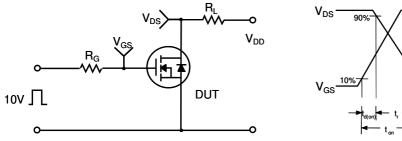
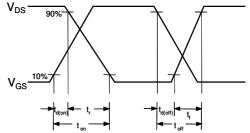


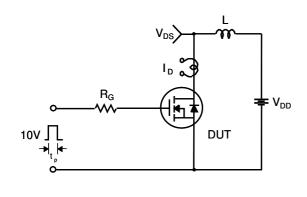
Figure 10. Maximum Drain Current vs. Case Temperature

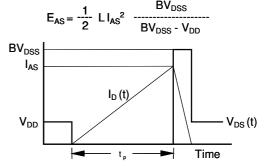



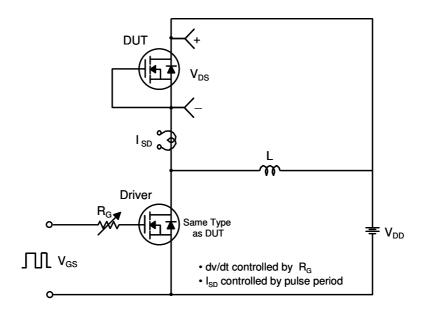

Figure 11. Transient Thermal Response Curve

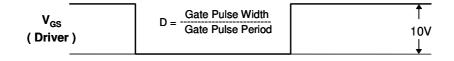

©2000 Fairchild Semiconductor International Rev. A, April 2000

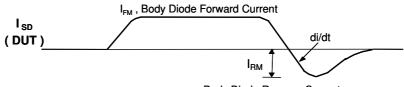
Gate Charge Test Circuit & Waveform

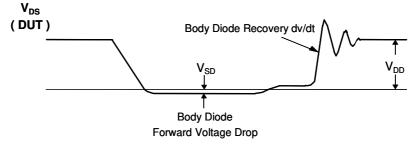


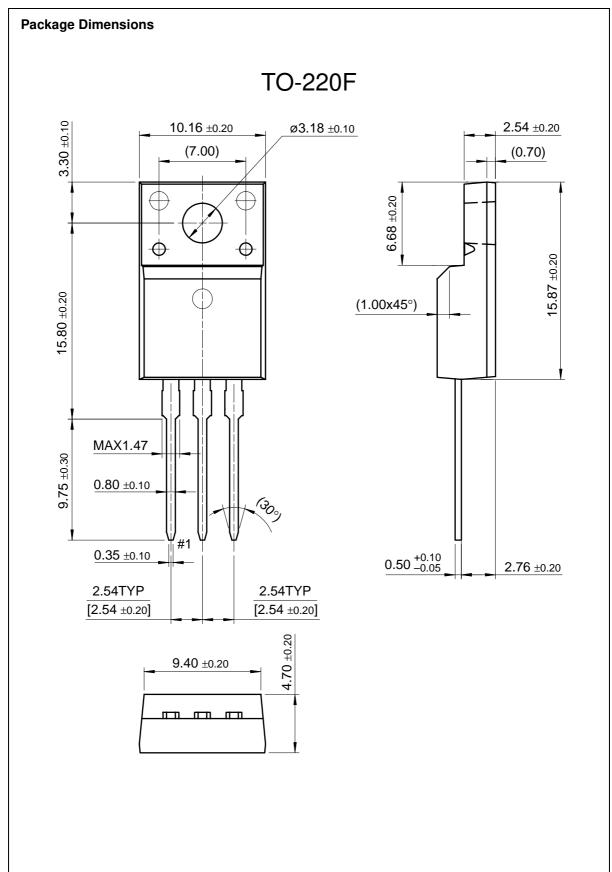

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms




Peak Diode Recovery dv/dt Test Circuit & Waveforms



Body Diode Reverse Current

©2000 Fairchild Semiconductor International

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

FAST[®] Quiet Series[™] SuperSOT[™]-3 GTO[™] SuperSOT[™]-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.