Onsemi

MOSFET – N-Channel, POWERTRENCH[®]

30 V, 20 A, 6.1 m Ω

FDMC8651

General Description

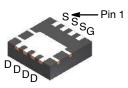
This device has been designed specifically to improve the efficiency of DC/DC converters. Using new techniques in MOSFET construction, the various components of gate charge and capacitance have been optimized to reduce switching losses. Low gate resistance and very low Miller charge enable excellent performance with both adaptive and fixed dead time gate drive circuits. Very low r_{DS(on)} has been maintained to provide a sub logic-level device.

Features

- Max $r_{DS(on)} = 6.1 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 15 \text{ A}$ Max $r_{DS(on)} = 9.3 \text{ m}\Omega$ at $V_{GS} = 2.5 \text{ V}$, $I_D = 12 \text{ A}$
- Low Profile 1 mm Max in Power 33
- 100% UIL Tested
- Pb-Free, Halide Free and RoHS Compliant

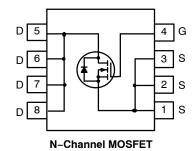
Applications

- Synchronous Rectifier
- 3.3 V Input Synchronous Buck Switch


ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

-	_	_	_
Symbol	Parameter	Value	Unit
V _{DS}	Drain-Source Voltage	30	V
V _{GS}	Gate-Source Voltage	±12	V
ID	$ \begin{array}{ll} Drain \ Current \\ - \ Continuous \ (Package \ Limited) \\ - \ Continuous \ (Silicon \ Limited) \\ - \ Continuous \ (Silicon \ Limited) \\ - \ Continuous \ (Note \ 1a) \\ - \ Pulsed \end{array} , \begin{array}{ll} T_C = 25^\circ C \\ T_C = 25^\circ C \\ T_A = 25^\circ C \\ T_A = 25^\circ C \end{array} $	20 64 15 60	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	128	mJ
PD	$\begin{array}{ll} \mbox{Power Dissipation} & T_{C} = 25^{\circ}C \\ \mbox{Power Dissipation (Note 1a)} & T_{A} = 25^{\circ}C \end{array}$	41 2.3	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS (T _A = 25°C unless otherwise noted.)	THERMAL CHARACTERISTICS	$(T_A = 25^{\circ}C \text{ unless otherwise noted.})$
---	-------------------------	---

Symbol	Parameter	Value	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	3	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	53	°C/W

PQFN8 3.3 × 3.3, 0.65P (Power 33) CASE 483AK

ELECTRICAL CONNECTION

MARKING DIAGRAM

ZXYYKK FDMC 8651	
0	

Z	= Assembly Plant Code
XYY	= 3-Digit Date Code Format
KK	= 2-Alphanumeric Lot Run Tracea

- ability Code
- FDMC8651 = Specific Device Code

Ζ

ORDERING INFORMATION

Device	Package	Shipping †
FDMC8651	PQFN8 (Pb-Free/	3000 / Tape & Reel
	Halide Free)	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted.)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	I_{D} = 250 µA, V_{GS} = 0 V	30	-	-	V
$\Delta BV_{DSS} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	27.5	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 24 V, V_{GS} = 0 V	-	-	1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±12 V, V_{DS} = 0 V	-	-	±100	nA

ON CHARACTERISTICS

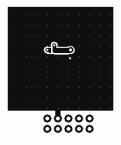
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	0.8	1.1	1.5	V
${\Delta V_{GS(th)} \over \Delta T_J}$ /	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	-4.4	-	mV/°C
^r DS(on)	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = 4.5 \; V, I_D = 15 \; A \\ V_{GS} = 2.5 \; V, I_D = 12 \; A \\ V_{GS} = 4.5 \; V, I_D = 15 \; A, T_J = 125^\circ C \end{array} $		4.3 6.2 6.3	6.1 9.3 9.0	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 15 A	-	91	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	-	2530	3365	pF
C _{oss}	Output Capacitance		-	865	1150	pF
C _{rss}	Reverse Transfer Capacitance		-	140	205	pF
Rg	Gate Resistance		-	0.8	-	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 V, I_D = 15 A,$	-	18	31	ns
t _r	Rise Time	$V_{\rm GS}$ = 4.5 V, $R_{\rm GEN}$ = 6 Ω	-	9	18	ns
t _{d(off)}	Turn–Off Delay Time		-	35	56	ns
t _f	Fall Time		-	6	12	ns
Q _{g(TOT)}	Total Gate Charge at 4.5 V	V _{DD} = 15 V, I _D = 15 A	-	19.4	27.2	nC
Q _{gs}	Total Gate Charge		-	4.8	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		_	4.2	-	nC


DRAIN-SOURCE DIODE CHARACTERISTICS

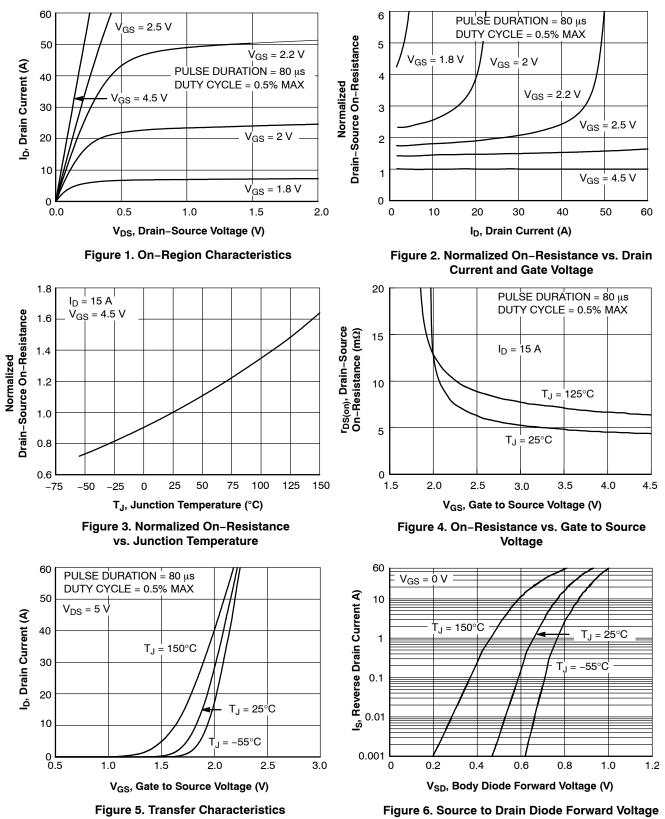
V _{SD}	Source to Drain Diode Forward	V _{GS} = 0 V, I _S = 15 A (Note 2)	_	0.8	1.3	V
	Voltage	V_{GS} = 0 V, I _S = 1.7 A (Note 2)	-	0.7	1.2	
t _{rr}	Reverse Recovery Time	I _F = 15 A, di/dt = 100 A/μs	-	35	55	ns
Q _{rr}	Reverse Recovery Charge		-	17	30	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. R_{0JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

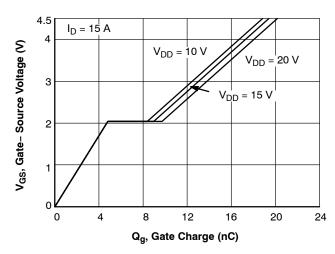
a) 53°C/W when mounted on a 1 in² pad of 2 oz. copper.



b) $125^{\circ}C/W$ when mounted on a minimum pad of 2 oz. copper.

- 2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%. 3. Starting T_J = 25°C; N–ch: L = 1 mH, I_{AS} = 16 A, V_{DD} = 27 V, V_{GS} = 10 V.

TYPICAL CHARACTERISTICS


(T_J = 25°C unless otherwise noted)

vs. Source Current

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

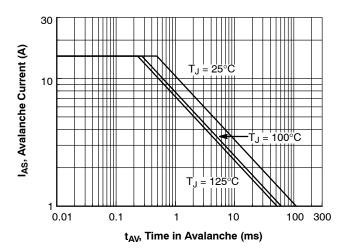


Figure 9. Unclamped Inductive Switching Capability

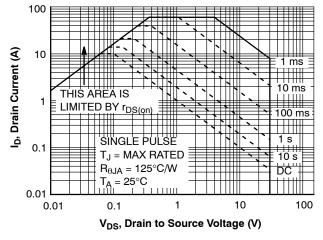


Figure 11. Forward Bias Safe Operating Area

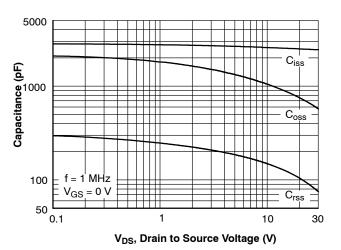


Figure 8. Capacitance vs. Drain to Source Voltage

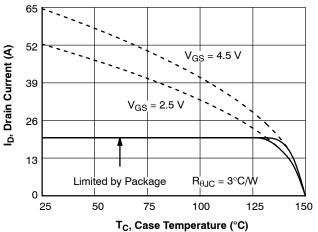


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

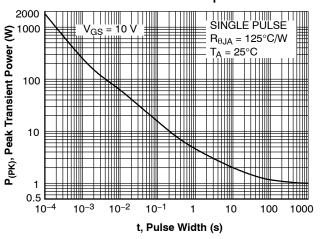


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

(T_J = 25°C unless otherwise noted)

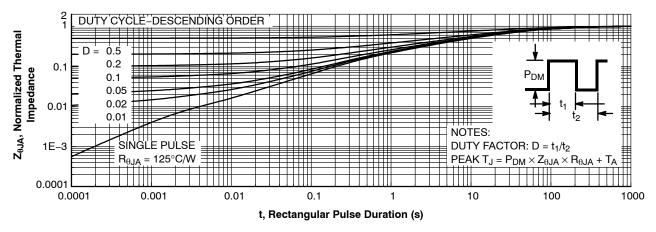
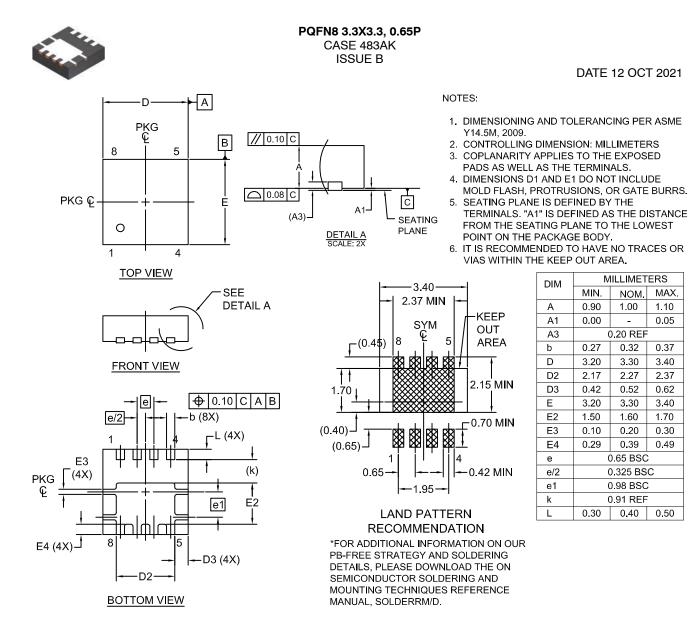



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

ONSEM¹.

DOCUMENT NUMBER:	98AON13660G	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	PQFN8 3.3X3.3, 0.65P		PAGE 1 OF 1
the right to make changes without furth purpose, nor does onsemi assume as	ner notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cours es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	roducts for any particular

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales