Dual supply translating transceiver; auto direction sensing; 3-state

Rev. 2 — 22 May 2012

Product data sheet

1. General description

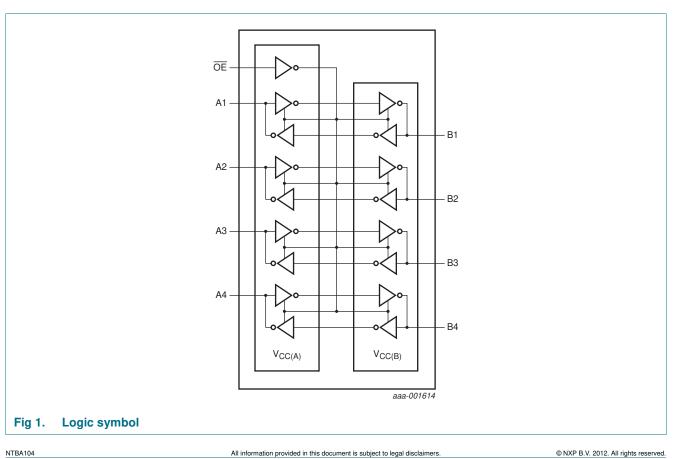
The NTBA104 is a 4-bit, dual supply translating transceiver with auto direction sensing, that enables bidirectional voltage level translation. It features two 4-bit input-output ports (An and Bn), one output enable input (\overline{OE}) and two supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). $V_{CC(A)}$ can be supplied at any voltage between 1.2 V and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V).

Pins An and \overline{OE} are referenced to V_{CC(A)} and pins Bn are referenced to V_{CC(B)}. A HIGH level at pin \overline{OE} causes the outputs to assume a high-impedance OFF-state. This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

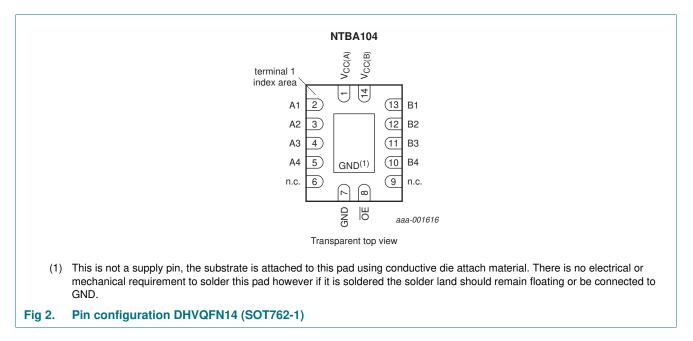
- Wide supply voltage range:
 - ◆ V_{CC(A)}: 1.2 V to 3.6 V and V_{CC(B)}: 1.65 V to 5.5 V
- I_{OFF} circuitry provides partial Power-down mode operation
- Inputs accept voltages up to 5.5 V
- ESD protection:
 - HBM JESD22-A114E Class 2 exceeds 2500 V for A port
 - ◆ HBM JESD22-A114E Class 3B exceeds 15000 V for B port
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1500 V
- Latch-up performance exceeds 100 mA per JESD 78B Class II
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

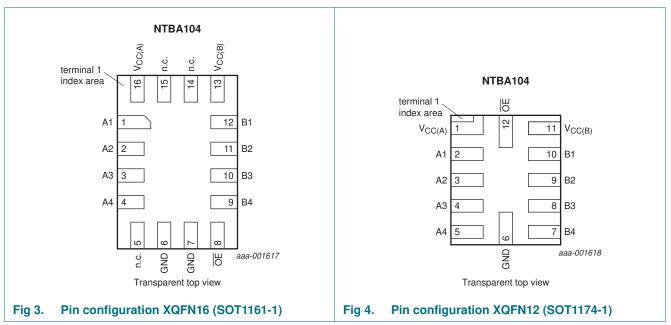
3. Ordering information


Type number	Package						
	Temperature range	Name	Description	Version			
NTBA104BQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1			
NTBA104GU16	–40 °C to +125 °C	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body 1.80 x 2.60 x 0.50 mm	SOT1161-1			
NTBA104GU12	–40 °C to +125 °C	XQFN12	plastic, extremely thin quad flat package; no leads; 12 terminals; body 1.70 x 2.0 x 0.50 mm	SOT1174-1			

4. Marking

Table 2. Marking codes


Type number	Marking code
NTBA104BQ	BA104
NTBA104GU16	tA4
NTBA104GU12	tA


5. Functional diagram

6. Pinning information

6.1 Pinning

Symbol	Pin			Description
	SOT762-1	SOT1161-1	SOT1174-1	-
V _{CC(A)}	1	16	1	supply voltage A
A1, A2, A3, A4	2, 3, 4, 5	1, 2, 3, 4	2, 3, 4, 5	data input or output (referenced to $V_{CC(A)}$)
n.c.	6, 9	5, 14, 15	-	not connected
GND	7	6, 7	6	ground (0 V)
OE	8	8	12	output enable input (active LOW; referenced to $V_{\text{CC}(\text{A})})$
B4, B3, B2, B1	10, 11, 12, 13	9, 10, 11, 12	7, 8, 9, 10	data input or output (referenced to $V_{CC(B)}$)
V _{CC(B)}	14	13	11	supply voltage B

6.2 Pin description

7. Functional description

Table 4. Function table^[1]

Supply voltage		Input	Input/output	
V _{CC(A)} V _{CC(B)}		OE	An	Bn
1.2 V to $V_{CC(B)}$	1.65 V to 5.5 V	Н	Z	Z
1.2 V to $V_{CC(B)}$	1.65 V to 5.5 V	L	input or output	output or input
GND ^[2]	GND ^[2]	Х	Z	Z

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

[2] When either $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into power-down mode.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

			•		,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+6.5	V
V _{CC(B)}	supply voltage B		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Vo	output voltage	Active mode	<u>[1][2][3]</u> –0.5	$V_{CCO} + 0.5$	V
		Power-down or 3-state mode	<u>[1]</u> –0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
lo	output current	$V_{O} = 0 V$ to V_{CCO}	[2] _	±50	mA
I _{CC}	supply current	$I_{CC(A)}$ or $I_{CC(B)}$	-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C

4 of 24

Dual supply translating transceiver; auto direction sensing; 3-state

Table 5. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$	<u>[4]</u> _	250	mW

[1] The minimum input and minimum output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output.

[3] V_{CCO} + 0.5 V should not exceed 6.5 V.

[4] For DHVQFN14 packages: above 60 °C the value of P_{tot} derates linearly at 4.5 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions^{[1][2]}

	· · ·				
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		1.2	3.6	V
V _{CC(B)}	supply voltage B		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Power-down or 3-state mode; $V_{CC(A)} = 1.2$ V to 3.6 V; $V_{CC(B)} = 1.65$ V to 5.5 V			
		A port	0	3.6	V
		B port	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC(A)} = 1.2$ V to 3.6 V; $V_{CC(B)} = 1.65$ V to 5.5 V	-	40	ns/V

[1] The A and B sides of an unused I/O pair must be held in the same state, both at V_{CCI} or both at GND.

[2] $V_{CC(A)}$ must be less than or equal to $V_{CC(B)}$.

10. Static characteristics

Table 7. Typical static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	A port; $V_{CC(A)}$ = 1.2 V; I_O = -20 μ A	-	1.1	-	V
V _{OL}	LOW-level output voltage	A port; $V_{CC(A)}$ = 1.2 V; I_O = 20 μ A	-	0.09	-	V
I	input leakage current	OE input; V _I = 0 V to 3.6 V; V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V	-	-	±1	μ A
I _{OZ}	OFF-state output current	A or B port; V _O = 0 V to V _{CCO} ; V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V	[1] -	-	±1	μ A
I _{OFF}	power-off leakage current	A port; V ₁ or V _O = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0 V to 5.5 V	-	-	±1	μ A
		B port; V ₁ or V _O = 0 V to 5.5 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0 V to 3.6 V	-	-	±1	μA

Table 7. Typical static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $T_{amb} = 25 \text{ °C}$.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{CC}	supply current	$V_I = 0 V \text{ or } V_{CCI}; I_O = 0 A$	[2]			
		$I_{CC(A)};V_{CC(A)}$ = 1.2 V; $V_{CC(B)}$ = 1.65 V to 5.5 V	-	0.05	-	μA
		$I_{CC(B)};V_{CC(A)}$ = 1.2 V; $V_{CC(B)}$ = 1.65 V to 5.5 V	-	3.3	-	μA
		$I_{CC(A)} + I_{CC(B)}; V_{CC(A)} = 1.2 \text{ V}; V_{CC(B)} = 1.65 \text{ V} \text{ to } 5.5 \text{ V}$	-	3.5	-	μA
CI	input capacitance	$\overline{\text{OE}}$ input; $V_{CC(A)}$ = 1.2 V to 3.6 V; $V_{CC(B)}$ = 1.65 V to 5.5 V	-	2.0	-	pF
C _{I/O}	input/output capacitance	A port; $V_{CC(A)}$ = 1.2 V to 3.6 V; $V_{CC(B)}$ = 1.65 V to 5.5 V	-	4.0	-	pF
		B port; $V_{CC(A)} = 1.2$ V to 3.6 V; $V_{CC(B)} = 1.65$ V to 5.5 V	-	7.5	-	pF

[1] V_{CCO} is the supply voltage associated with the output.

[2] V_{CCI} is the supply voltage associated with the input.

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		–40 °C to +85 °C		–40 °C to +125 °C		Unit
				Min	Max	Min	Max	
V _{IH}	HIGH-level	A or B port and OE input	[1]					
	input voltage	$V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$		0.65V _{CCI}	-	0.65V _{CCI}	-	V
V _{IL}	LOW-level	A or B port and OE input	[1]					
	input voltage	$V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$		-	0.35V _{CCI}	-	0.35V _{CCI}	V
011	HIGH-level output voltage	I _O = -20 μA	[2]					
		A port; $V_{CC(A)} = 1.4$ V to 3.6 V		$V_{\text{CCO}}-0.4$	-	$V_{CCO}-0.4$	-	V
		B port; $V_{CC(B)} = 1.65$ V to 5.5 V		$V_{\text{CCO}}-0.4$	-	$V_{CCO}-0.4$	-	V
V _{OL}	LOW-level output voltage	I _O = 20 μA	[2]					
		A port; $V_{CC(A)} = 1.4$ V to 3.6 V		-	0.4	-	0.4	V
		B port; $V_{CC(B)} = 1.65$ V to 5.5 V		-	0.4	-	0.4	V
I	input leakage current			-	±2	-	±5	μA
I _{OZ}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = 1.2$ V to 3.6 V; $V_{CC(B)} = 1.65$ V to 5.5 V	[2]	-	±2	-	±10	μA
I _{OFF}	power-off leakage	A port; V _I or V _O = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0 V to 5.5 V		-	±2	-	±10	μA
	current	B port; V _I or V _O = 0 V to 5.5 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0 V to 3.6 V		-	±2	-	±10	μA

NTBA104

Dual supply translating transceiver; auto direction sensing; 3-state

Symbol	Parameter	Conditions	_40 °C 1	to +85 °C	-40 °C to	o +125 ℃	Unit
			Min	Max	Min	Max	
I _{CC}	supply current	$V_{I} = 0 V \text{ or } V_{CCI}; I_{O} = 0 A$ [1]					
		I _{CC(A)}					
		OE = HIGH; V _{CC(A)} = 1.4 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V	-	5	-	15	μA
		OE = LOW; V _{CC(A)} = 1.4 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V	-	5	-	20	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-	2	-	15	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 5.5 V$	-	-2	-	-15	μA
		I _{CC(B)}					
		OE = HIGH; V _{CC(A)} = 1.4 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V	-	5	-	15	μA
		OE = LOW; V _{CC(A)} = 1.4 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V	-	5	-	20	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-	-2	-	-15	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 5.5 V$	-	2	-	15	μA
		$I_{CC(A)} + I_{CC(B)}$					
		$V_{CC(A)} = 1.4 V \text{ to } 3.6 V;$ $V_{CC(B)} = 1.65 V \text{ to } 5.5 V$	-	10	-	40	μA

Table 8. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

[1] V_{CCI} is the supply voltage associated with the input.

[2] V_{CCO} is the supply voltage associated with the output.

11. Dynamic characteristics

 Table 9.
 Typical dynamic characteristics for temperature 25 °C^[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for waveforms see Figure 5 and Figure 6.

Symbol	Parameter	Conditions			٧c	C(B)		Unit
				1.8 V	2.5 V	3.3 V	5.0 V	
$V_{CC(A)} = 1$	1.2 V; T _{amb} = 25 °C							
t _{pd}	propagation delay	A to B		5.9	4.8	4.4	4.2	ns
		B to A		5.6	4.8	4.5	4.4	ns
t _{en}	enable time	OE to A, B		0.5	0.5	0.5	0.5	μS
t _{dis}	disable time	OE to A; no external load	[2]	9.3	9.3	9.3	9.3	ns
		OE to B; no external load	[2]	8.7	7.7	7.6	7.1	ns
		OE to A		81	69	83	68	ns
		OE to B		81	69	83	68	ns
tt transition time	transition time	A port		4.0	4.0	4.1	4.1	ns
		B port		2.6	2.0	1.7	1.4	ns

80

Mbps

Dual supply translating transceiver; auto direction sensing; 3-state

80

80

Voltages	are referenced to GI	VD (ground = 0 V); for te	st circuit see	e <u>Figure 7</u> ; f	or waveforms	see <u>Figure</u> :	5 and Figure	<u>96</u> .	
Symbol	Parameter	Conditions		V _{CC(B)}					
				1.8 V	2.5 V	3.3 V	5.0 V		
t _{sk(o)}	output skew time	between channels	[3]	0.2	0.2	0.2	0.2	ns	
tw	pulse width	data inputs		15	13	13	13	ns	

70

Typical dynamic characteristics for temperature 25 °C^[1] ... continued Table 9.

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

data rate

f_{data}

ten is the same as tPZL and tPZH.

 t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$

 $t_{t} \mbox{ is the same as } t_{THL} \mbox{ and } t_{TLH}$

[2] Delay between \overline{OE} going HIGH and when the outputs are actually disabled.

[3] Skew between any two outputs of the same package switching in the same direction.

Table 10. Dynamic characteristics for temperature range –40 °C to +85 °C^[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6.

Parameter	Conditions					Vcc	C(B)				Unit
			1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	
			Min	Max	Min	Max	Min	Max	Min	Max	
1.5 V ± 0.1 V											
propagation	A to B		1.4	12.9	1.2	10.1	1.1	10.0	0.8	9.9	ns
delay	B to A		0.9	14.2	0.7	12.0	0.4	11.7	0.3	13.7	ns
enable time	OE to A, B		-	1.0	-	1.0	-	1.0	-	1.0	μs
disable time	OE to A; no external load	[2]	1.0	12.9	1.0	12.9	1.0	12.9	1.0	12.9	ns
	OE to B; no external load	[2]	1.0	18.7	1.0	15.8	1.0	15.1	1.0	14.4	ns
	OE to A		-	320	-	260	-	260	-	280	ns
	OE to B		-	-	200	-	200	-	200	-	ns
transition	A port		0.9	5.1	0.9	5.1	0.9	5.1	0.9	5.1	ns
time	B port		0.9	4.7	0.6	3.2	0.5	2.5	0.4	2.7	ns
output skew time	between channels	[3]	-	0.5	-	0.5	-	0.5	-	0.5	ns
pulse width	data inputs		25	-	25	-	25	-	25	-	ns
data rate			-	40	-	40	-	40	-	40	Mbps
1.8 V ± 0.15 V											
propagation	A to B		1.6	11.0	1.4	7.7	1.3	6.8	1.2	6.5	ns
delay	B to A		1.5	12.0	1.3	8.4	1.0	7.6	0.9	7.1	ns
enable time	OE to A, B		-	1.0	-	1.0	-	1.0	-	1.0	μS
disable time	OE to A; no external load	[2]	1.0	11.7	1.0	11.7	1.0	11.7	1.0	11.7	ns
	OE to B; no external load	[2]	1.0	16.9	1.0	14.5	1.0	13.7	1.0	12.7	ns
	OE to A		-	260	-	230	-	230	-	230	ns
	OE to B		-	200	-	200	-	200	-	200	ns
transition	A port		0.8	4.1	0.8	4.1	0.8	4.1	0.8	4.1	ns
time	B port		0.9	4.7	0.6	3.2	0.5	2.5	0.4	2.7	ns
	1.5 V ± 0.1 V propagation delay enable time disable time disable time disable time output skew time output skew pulse width data rate 1.8 V ± 0.15 V propagation delay enable time disable time transition	I.5 V ± 0.1 Vpropagation delayA to B B to Aenable timeOE to A, Bdisable timeOE to A; no external load OE to B; no external load 	1.5 V ± 0.1 Vpropagation delayA to B B to Aenable timeOE to A, Bdisable timeOE to A; no external loaddisable timeOE to B; no external load0E to B; no external load[2] OE to Btransition timeA porttransition timeA portpulse width data ratedata inputs1.8 V ± 0.15 VImage: Compagation B to Apropagation delayA to B B to Aisable timeOE to A, BOE to A, BImage: Compagation OE to A, Bdisable timeOE to A; no external loadOE to B; no external load[2] OE to A, BCoE to B; no external load[2] OE to A; no external loadfunction transition timeA porttransition timeA port	I.8 V±0.1 V I.8 V±0.1 V propagation delay A to B 1.4 B to A 0.9 enable time OE to A, B - disable time OE to A; no external load [2] 1.0 OE to B; no external load [2] 1.0 OE to B; no external load [2] 1.0 OE to B; no external load [2] 1.0 OE to B - - OE to A - 0.9 B port 0.9 - pulse width data inputs 25 data rate - - propagation delay A to B 1.6 B to A 1.5 - enable time OE to A, no external load [2] 1.0 OE to	I.8 V ± 0.15 V Min Max I.5 V ± 0.1 V A to B 1.4 12.9 propagation delay A to B 1.4 12.9 B to A 0.9 14.2 enable time OE to A, B - 1.0 disable time OE to A; no external load [2] 1.0 18.7 OE to B; no external load [2] 1.0 18.7 OE to B; no external load [2] 1.0 18.7 OE to B; no external load [2] 1.0 18.7 OE to B; no external load [2] 1.0 18.7 OE to B; no external load [2] 1.0 18.7 OE to B - - - Output skew between channels [3] 1.6 0.5 pulse width data inputs 25 - - data rate - 40 1.5 12.0 propagation delay A to B - 1.5 12.0 B to A OE to A; no	I.8 V±0.15 V 2.5 V : Min Max Min I.5 V±0.1 V A to B 1.4 12.9 1.2 propagation delay A to B 1.4 12.9 1.2 B to A 0.9 14.2 0.7 enable time OE to A, B - 1.0 - OE to B; no external load 12 1.0 12.9 1.0 OE to B; no external load 12 1.0 1.0 - OE to A; no external load 12 1.0 1.0 - OE to B; no external load 12 1.0 1.0 - OE to B< no external load 12 1.0 1.0 1.0 OE to B - .200 .200 .200 .200 transition Aport 0.9 5.1 0.9 .200 .200 pulse width data inputs 25 - .25 .25 .25 data rate Propagation delay A to B .20 .10	I.8 V ± 0.15 V 2.5 V ± 0.2 V Min Max Min Max 1.5 V ± 0.1 V A to B 1.4 12.9 1.2 10.1 gropagation delay A to B 1.4 12.9 1.2 10.1 gropagation delay OE to A, B - 1.0 - 1.0 gropagation delay OE to A, B - 1.0 1.2 1.0 gropagation delay OE to A, no external load [2] 1.0 18.7 1.0 12.9 OE to B; no external load [2] 1.0 18.7 1.0 15.8 OE to A - 320 - 260 OE to B; no external load [2] 1.0 18.7 1.0 15.8 OE to A - 320 - 260 - 260 - 260 - 260 - 260 - 260 - 260 - 260 - 260 - 260 - 260 - <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{$</td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ $

NTBA104 **Product data sheet**

Symbol	Parameter	Conditions					Vcc	C(B)				Unit
-				1.8 V ±	0.15 V	2.5 V :			± 0.3 V	5.0 V :	± 0.5 V	-
				Min	Max	Min	Max	Min	Мах	Min	Max	_
t _{sk(o)}	output skew time	between channels	[3]	-	0.5	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs		20	-	17	-	17	-	17	-	ns
f _{data}	data rate			-	49	-	60	-	60	-	60	Mbp
$V_{CC(A)} =$	2.5 V ± 0.2 V											
t _{pd}	propagation	A to B		-	-	1.1	6.3	1.0	5.2	0.9	4.7	ns
	delay	B to A		-	-	1.2	6.6	1.1	5.1	0.9	4.4	ns
t _{en}	enable time	OE to A, B		-	-	-	1.0	-	1.0	-	1.0	μS
t _{dis}	disable time	OE to A; no external load	[2]	-	-	1.0	9.7	1.0	9.7	1.0	9.7	ns
		OE to B; no external load	[2]	-	-	1.0	12.9	1.0	12.0	1.0	11.0	ns
		OE to A		-	-	-	200	-	200	-	200	ns
		OE to B		-	-	-	200	-	200	-	200	ns
^t t	transition	A port		-	-	0.7	3.0	0.7	3.0	0.7	3.0	ns
	time	B port		-	-	0.7	3.2	0.5	2.5	0.4	2.7	ns
sk(o)	output skew time	between channels	<u>[3]</u>	-	-	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs		-	-	12	-	10	-	10	-	ns
data	data rate			-	-	-	85	-	100	-	100	Mbp
$V_{CC(A)} =$	3.3 V ± 0.3 V											
pd	propagation	A to B		-	-	-	-	0.9	4.7	0.8	4.0	ns
	delay	B to A		-	-	-	-	1.0	4.9	0.9	3.8	ns
len	enable time	OE to A, B		-	-	-	-	-	1.0	-	1.0	μs
dis	disable time	OE to A; no external load	[2]	-	-	-	-	1.0	9.4	1.0	9.4	ns
		OE to B; no external load	[2]	-	-	-	-	1.0	11.3	1.0	10.4	ns
		OE to A		-	-	-	-	-	260	-	260	ns
		OE to B		-	-	-	-	-	200	-	200	ns
t	transition	A port		-	-	-	-	0.7	2.5	0.7	2.5	ns
	time	B port		-	-	-	-	0.5	2.5	0.4	2.7	ns
sk(o)	output skew time	between channels	[3]	-	-	-	-	-	0.5	-	0.5	ns
w	pulse width	data inputs		-	-	-	-	10	-	10	-	ns
f _{data}	data rate			-	-	-	-	-	100	-	100	Mbp

Table 10. Dynamic characteristics for temperature range -40 °C to +85 °C^[1] ...continued

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

 t_{en} is the same as t_{PZL} and t_{PZH} .

 t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$

 t_{t} is the same as t_{THL} and t_{TLH}

[2] Delay between \overline{OE} going HIGH and when the outputs are actually disabled.

[3] Skew between any two outputs of the same package switching in the same direction.

9 of 24

Symbol	Parameter	Conditions					۷ _{cc}					Unit
				1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	
				Min	Max	Min	Max	Min	Max	Min	Max	
$V_{CC(A)} =$	1.5 V ± 0.1 V											
t _{pd}	propagation	A to B		1.4	15.9	1.2	13.1	1.1	13.0	0.8	12.9	ns
	delay	B to A		0.9	17.2	0.7	15.0	0.4	14.7	0.3	16.7	ns
t _{en}	enable time	OE to A, B		-	1.0	-	1.0	-	1.0	-	1.0	μs
t _{dis}	disable time	OE to A; no external load	[2]	1.0	13.5	1.0	13.5	1.0	13.5	1.0	13.5	ns
		OE to B; no external load	[2]	1.0	19.9	1.0	16.8	1.0	16.1	1.0	15.2	ns
		OE to A		-	340	-	280	-	280	-	300	ns
		OE to B		-	220	-	220	-	220	-	220	ns
t _t	transition	A port		0.9	7.1	0.9	7.1	0.9	7.1	0.9	7.1	ns
	time	B port		0.9	6.5	0.6	5.2	0.5	4.8	0.4	4.7	ns
t _{sk(o)}	output skew time	between channels	<u>[3]</u>	-	0.5	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs		25	-	25	-	25	-	25	-	ns
f _{data}	data rate			-	40	-	40	-	40	-	40	Mbp
$V_{CC(A)} =$	1.8 V ± 0.15 V											
^I pd	propagation	A to B		1.6	14.0	1.4	10.7	1.3	9.8	1.2	9.5	ns
	delay	B to A		1.5	15.0	1.3	11.4	1.0	10.6	0.9	10.1	ns
en	enable time	OE to A, B		-	1.0	-	1.0	-	1.0	-	1.0	μS
dis	disable time	OE to A; no external load	[2]	1.0	12.3	1.0	12.3	1.0	12.3	1.0	12.3	ns
		OE to B; no external load	[2]	1.0	18.1	1.0	15.3	1.0	14.5	1.0	13.5	ns
		OE to A		-	280	-	250	-	250	-	250	ns
		OE to B		-	220	-	220	-	220	-	220	ns
t	transition	A port		0.8	6.2	0.8	6.1	0.8	6.1	0.8	6.1	ns
	time	B port		0.9	5.8	0.6	5.2	0.5	4.8	0.4	4.7	ns
sk(o)	output skew time	between channels	[3]	-	0.5	-	0.5	-	0.5	-	0.5	ns
w	pulse width	data inputs		22	-	19	-	19	-	19	-	ns
data	data rate			-	45	-	55	-	55	-	55	Mbp
V _{CC(A)} =	2.5 V ± 0.2 V											
t _{pd}	propagation	A to B		-	-	1.1	9.3	1.0	8.2	0.9	7.7	ns
	delay	B to A		-	-	1.2	9.6	1.1	8.1	0.9	7.4	ns
t _{en}	enable time	OE to A, B		-	-	-	1.0	-	1.0	-	1.0	μS
dis	disable time	OE to A; no external load	[2]	-	-	1.0	10.1	1.0	10.1	1.0	10.1	ns
		OE to B; no external load	[2]	-	-	1.0	13.5	1.0	12.7	1.0	11.7	ns
		OE to A		-	-	-	220	-	220	-	220	ns
		OE to B		-	-	-	220	-	220	-	220	ns
t	transition	A port		-	-	0.7	5.0	0.7	5.0	0.7	5.0	ns
	time	B port		-	-	0.7	4.6	0.5	4.8	0.4	4.7	ns

 Table 11.
 Dynamic characteristics for temperature range -40 °C to +125 °C[1]

NTBA104 Product data sheet

10 of 24

Symbol	Parameter	Conditions					Vcc	C(B)				Unit
				1.8 V ±	: 0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	
				Min	Max	Min	Max	Min	Max	Min	Max	
t _{sk(o)}	output skew time	between channels	<u>[3]</u>	-	-	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs;		-	-	14	-	13	-	10	-	ns
f _{data}	data rate			-	-	-	75	-	80	-	100	Mbps
V _{CC(A)} =	3.3 V ± 0.3 V											
t _{pd}	propagation	A to B		-	-	-	-	0.9	7.7	0.8	7.0	ns
	delay	B to A		-	-	-	-	1.0	7.9	0.9	6.8	ns
t _{en}	enable time	OE to A, B		-	-	-	-	-	1.0	-	1.0	μS
t _{dis}	disable time	OE to A; no external load	[2]	-	-	-	-	1.0	9.9	1.0	9.9	ns
		OE to B; no external load	[2]	-	-	-	-	1.0	12.1	1.0	10.9	ns
		OE to A		-	-	-	-	-	280	-	280	ns
		OE to B		-	-	-	-	-	220	-	220	ns
t _t	transition	A port		-	-	-	-	0.7	4.5	0.7	4.5	ns
	time	B port		-	-	-	-	0.5	4.1	0.4	4.7	ns
t _{sk(o)}	output skew time	between channels	<u>[3]</u>	-	-	-	-	-	0.5	-	0.5	ns
tw	pulse width	data inputs		-	-	-	-	10	-	10	-	ns
f _{data}	data rate			-	-	-	-	-	100	-	100	Mbps

Table 11. Dynamic characteristics for temperature range -40 °C to +125 °C[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6.

 t_{dis} is the same as t_{PLZ} and t_{PHZ} .

 t_{t} is the same as t_{THL} and t_{TLH}

[2] Delay between \overline{OE} going HIGH and when the outputs are actually disabled.

[3] Skew between any two outputs of the same package switching in the same direction.

Dual supply translating transceiver; auto direction sensing; 3-state

Symbol	Parameter	Conditions				V _{CC(A)}				Unit
			1.2 V	1.2 V	1.5 V	1.8 V	2.5 V	2.5 V	3.3 V	
				V _{CC(B)}						
	T _{amb} = 25 °C		1.8 V	5.0 V	1.8 V	1.8 V	2.5 V	5.0 V	3.3 V to 5.0 V	
T _{amb} = 2	25 °C									
C _{PD}	power outputs enabled; OE = GND									
	dissipation capacitance	A port: (direction A to B)	5	5	5	5	5	5	5	pF
	capacitance	A port: (direction B to A)	8	8	8	8	8	8	8	pF
		B port: (direction A to B)	18	18	18	18	18	18	18	pF
		B port: (direction B to A)	13	16	12	12	12	12	13	pF
		outputs disabled; $OE = V_{CC(A)}$								
		A port: (direction A to B)	0.12	0.12	0.04	0.05	0.08	0.08	0.07	pF
		A port: (direction B to A)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
		B port: (direction A to B)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
		B port: (direction B to A)	0.07	0.09	0.07	0.07	0.05	0.09	0.09	pF

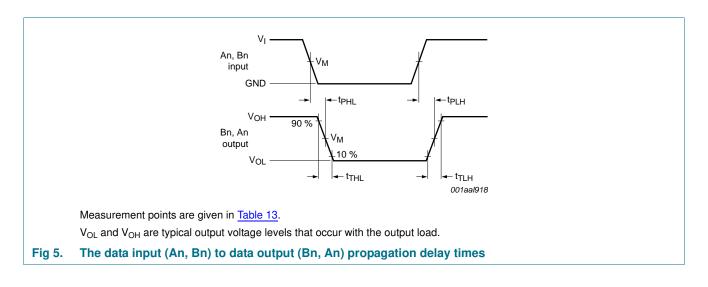
Table 12. Typical power dissipation capacitance

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 $f_i = input frequency in MHz;$

 $f_o = output frequency in MHz;$


 C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

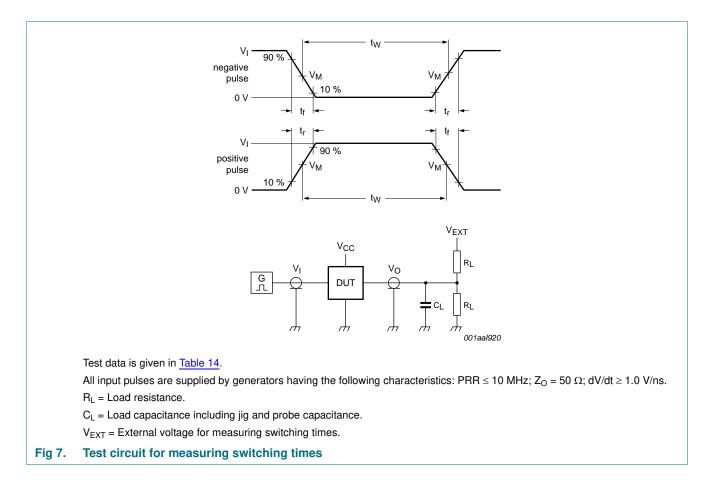
 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

12. Waveforms

All information provided in this document is subject to legal disclaimers.

NTBA104

Dual supply translating transceiver; auto direction sensing; 3-state


Table 13. Measurement points^[1]

Supply voltage	Input	Output		
V _{cco}	V _M	V _M	V _X	V _Y
1.2 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V
$1.5~V\pm0.1~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V
$1.8~V\pm0.15~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V
$2.5~V\pm0.2~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V
$3.3~V\pm0.3~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	$V_{OH} - 0.3 V$
$5.0~V\pm0.5~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	$V_{OH} - 0.3 V$

[1] V_{CCI} is the supply voltage associated with the input and V_{CCO} is the supply voltage associated with the output.

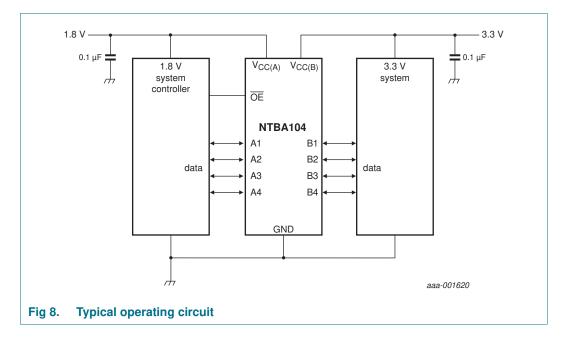
NTBA104

Dual supply translating transceiver; auto direction sensing; 3-state

Table 14. Test data

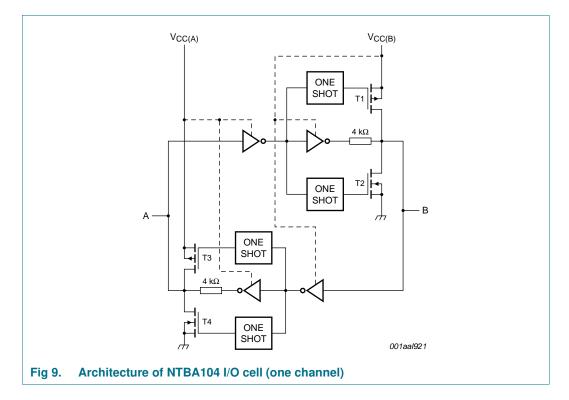
Supply voltage	je	Input	t Load		V _{EXT}			
V _{CC(A)}	V _{CC(B)}	VI <mark>[1]</mark>	$\Delta t / \Delta V$	CL	R _L [2]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]
1.2 V to 3.6 V	1.65 V to 5.5 V	V _{CCI}	\leq 1.0 ns/V	15 pF	50 kΩ, 1 MΩ	open	open	2V _{CCO}

[1] V_{CCI} is the supply voltage associated with the input.

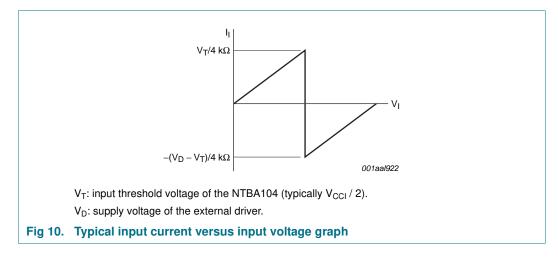

[2] For measuring data rate, pulse width, propagation delay and output rise and fall measurements, $R_L = 1 M\Omega$; for measuring enable and disable times, $R_L = 50 K\Omega$.

 $\label{eq:V_CCO} \mbox{is the supply voltage associated with the output.}$

13. Application information


13.1 Applications

Voltage level-translation applications. The NTBA104 can be used to interface between devices or systems operating at different supply voltages. See <u>Figure 8</u> for a typical operating circuit using the NTBA104.


13.2 Architecture

The architecture of the NTBA104 is shown in Figure 9. The device does not require an extra input signal to control the direction of data flow from A to B or from B to A. In a static state, the output drivers of the NTBA104 can maintain a defined output level, but the output architecture is designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing in the opposite direction. The output one shots detect rising or falling edges on the A or B ports. During a rising edge, the one shots turn on the PMOS transistors (T1, T3) for a short duration, accelerating the low-to-high transition. Similarly, during a falling edge, the one shots turn on the NMOS transistors (T2, T4) for a short duration, accelerating the high-to-low transition. During output transitions the typical output impedance is 70 Ω at V_{CCO} = 1.2 V to 1.8 V, 50 Ω at V_{CCO} = 1.8 V to 3.3 V and 40 Ω at V_{CCO} = 3.3 V to 5.0 V.

13.3 Input driver requirements

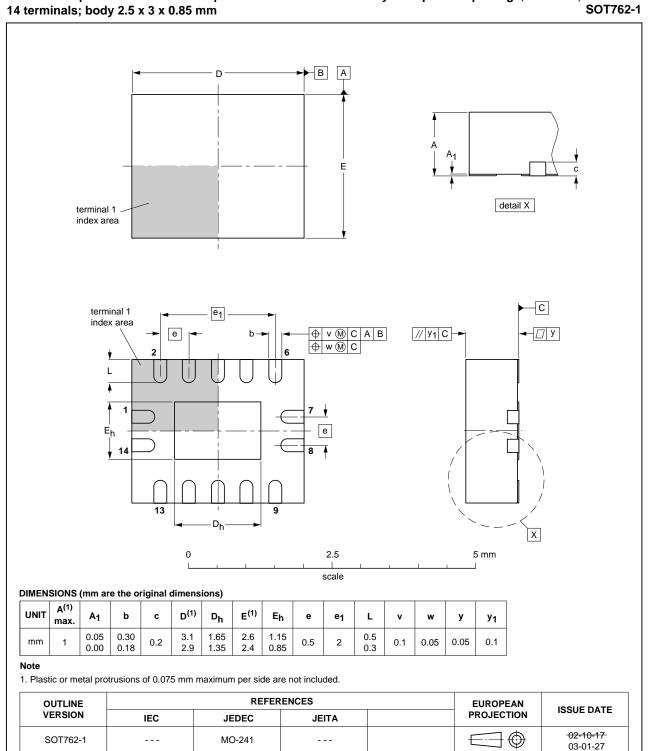
For correct operation, the device driving the data I/Os of the NTBA104 must have a minimum drive capability of ± 2 mA See <u>Figure 10</u> for a plot of typical input current versus input voltage.

13.4 Power up

During operation $V_{CC(A)}$ must never be higher than $V_{CC(B)}$, however during power-up $V_{CC(A)} \ge V_{CC(B)}$ does not damage the device, so either power supply can be ramped up first. There is no special power-up sequencing required. The NTBA104 includes circuitry that disables all output ports when either $V_{CC(A)}$ or $V_{CC(B)}$ is switched off.

13.5 Enable and disable

An output enable input (OE) is used to disable the device. Setting OE = HIGH causes all I/Os to assume the high-impedance OFF-state. The disable time (t_{dis} with no external load) indicates the delay between when OE goes HIGH and when outputs actually become disabled. The enable time (t_{en}) indicates the amount of time the user must allow for one one-shot circuitry to become operational after OE is taken LOW. To ensure the high-impedance OFF-state during power-up or power-down, pin OE should be tied to $V_{CC(A)}$ through a pull-up resistor, the minimum value of the resistor is determined by the current-sourcing capability of the driver.


13.6 Pull-up or pull-down resistors on I/O lines

As mentioned previously the NTBA104 is designed with low static drive strength to drive capacitive loads of up to 70 pF. To avoid output contention issues, any pull-up or pull-down resistors used must be kept higher than 50 k Ω . For this reason the NTBA104 is not recommended for use in open drain driver applications such as 1-Wire or I²C. For these applications, the NTSA104 level translator is recommended.

NTBA104

Dual supply translating transceiver; auto direction sensing; 3-state

14. Package outline

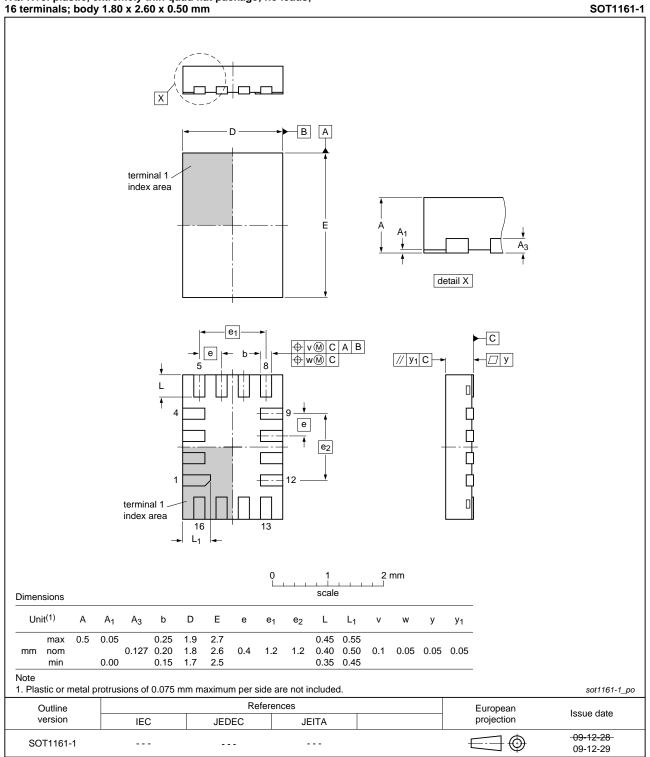
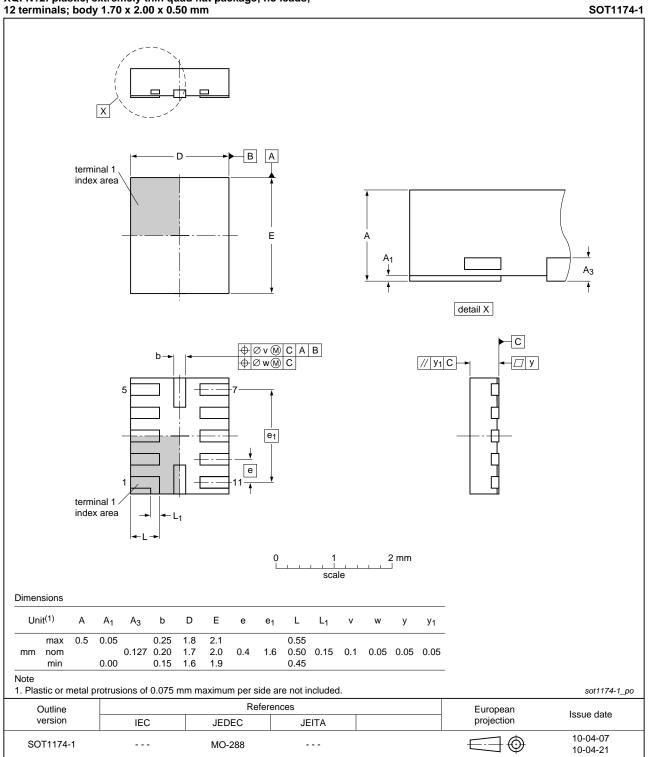

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;

Fig 11. Package outline SOT762-1 (DHVQFN14)

All information provided in this document is subject to legal disclaimers.

NTBA104

Dual supply translating transceiver; auto direction sensing; 3-state



XQFN16: plastic, extremely thin quad flat package; no leads; 16 terminals; body 1.80 x 2.60 x 0.50 mm

Fig 12. Package outline SOT1161-1 (XQFN16)

NTBA104 **Product data sheet**

Dual supply translating transceiver; auto direction sensing; 3-state

XQFN12: plastic, extremely thin quad flat package; no leads; 12 terminals; body 1.70 x 2.00 x 0.50 mm

Fig 13. Package outline SOT1174-1 (XQFN12)

All information provided in this document is subject to legal disclaimers.

NTBA104

15. Abbreviations

Table 15.	Abbreviations
Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

16. Revision history

Table 16. Revision	history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
NTBA104 v.2	20120522	Product data sheet	-	NTBA104 v.1
Modifications:	 Typical oper 	ating circuit (Figure 8) moc	lified (errata).	
NTBA104 v.1	20111206	Product data sheet	-	-

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2012. All rights reserved.

NTBA104

NTBA104

Dual supply translating transceiver; auto direction sensing; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NTBA104

Dual supply translating transceiver; auto direction sensing; 3-state

19. Contents

General description	. 1
Features and benefits	. 1
Ordering information	. 2
Marking	. 2
Functional diagram	. 2
Pinning information	. 3
Pinning	. 3
Pin description	. 4
Functional description	. 4
Limiting values	. 4
Recommended operating conditions	. 5
Static characteristics	. 5
Dynamic characteristics	. 7
Waveforms	12
Application information.	15
Applications	15
Architecture	16
Input driver requirements	17
Power up	17
Enable and disable	17
Pull-up or pull-down resistors on I/O lines	17
Package outline	18
Abbreviations	21
Revision history	21
Legal information	22
Data sheet status	
Definitions	22
Disclaimers	22
Trademarks	23
Contact information	23
Contents	24
	Features and benefitsOrdering information.Marking.Functional diagram .Pinning information.Pinning .Pin descriptionFunctional descriptionLimiting values.Recommended operating conditions.Static characteristics.Dynamic characteristics.Dynamic characteristics.WaveformsApplication information.ApplicationsArchitectureInput driver requirementsPower upEnable and disablePull-up or pull-down resistors on I/O linesPackage outlineAbbreviations.Revision history.Legal information.Data sheet statusDefinitions.Disclaimers.Trademarks.Contact information.

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 May 2012 Document identifier: NTBA104