

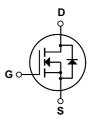
FQD1N50 / FQU1N50

500V N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, power factor correction, electronic lamp ballast based on half bridge.


Features

- 1.1A, 500V, $R_{DS(on)}$ = 9.0 Ω @V_{GS} = 10 V Low gate charge (typical 4.0 nC)
- Low Crss (typical 3.0 pF)
- · Fast switching
- · 100% avalanche tested
- Improved dv/dt capability
- · RoHS Compliant

Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		FQD1N50 / FQU1N50	Units
V _{DSS}	Drain-Source Voltage		500	V
I _D	Drain Current - Continuous (T _C = 25°C)		1.1	Α
	- Continuous (T _C = 100°C)		0.7	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	4.4	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	80	mJ
I _{AR}	Avalanche Current	(Note 1)	1.1	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	2.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P _D	Power Dissipation (T _A = 25°C) *		2.5	W
	Power Dissipation (T _C = 25°C) - Derate above 25°C		25	W
			0.2	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		5.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage V _{GS} = 0 V, I _D = 250 μA		500			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.5		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V			1	μА
		V _{DS} = 400 V, T _C = 125°C			10	μА
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	racteristics		•			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} =10 V, I _D =0.55 A		6.8	9.0	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 0.55 A (Note 4)		0.98		S
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		3.0	30 4.0	pF pF
C _{rss}	Reverse Transfer Capacitance			3.0	4.0	pF
Switchi	ing Characteristics					
	ing Characteristics Turn-On Delay Time	Vpp = 250 V lp = 1.4 A		5	20	ns
t _{d(on)}		$V_{DD} = 250 \text{ V, } I_{D} = 1.4 \text{ A,}$ $R_{G} = 25 \Omega$		5 25	20	ns ns
t _{d(on)}	Turn-On Delay Time	$R_G = 25 \Omega$				
$t_{d(on)}$ t_r $t_{d(off)}$	Turn-On Delay Time Turn-On Rise Time	55		25	60	ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	$R_G = 25 \Omega$		25 8	60 25	ns ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 400 \text{ V}, I_D = 1.4 \text{ A}, V_{GS} = 10 \text{ V}$		25 8 20	60 25 50	ns ns ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 400 \text{ V}, I_D = 1.4 \text{ A},$		25 8 20 4.0	60 25 50 5.5	ns ns ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	R_{G} = 25 Ω (Note 4, 5) V_{DS} = 400 V, I_{D} = 1.4 A, V_{GS} = 10 V (Note 4, 5)		25 8 20 4.0 1.1	60 25 50 5.5 	ns ns ns nC
$egin{array}{l} t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25~\Omega \label{eq:RG}$ (Note 4, 5) $V_{DS} = 400~V, I_{D} = 1.4~A, \label{eq:VGS}$ (Note 4, 5) $V_{GS} = 10~V \label{eq:VGS}$ (Note 4, 5)		25 8 20 4.0 1.1	60 25 50 5.5 	ns ns ns nC
$egin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline egin{array}{c} Drain-S \\ I_S \\ I_{SM} \\ \end{array}$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	R_G = 25 Ω (Note 4, 5) V_{DS} = 400 V, I_D = 1.4 A, V_{GS} = 10 V (Note 4, 5) and Maximum Ratings ode Forward Current Forward Current	 	25 8 20 4.0 1.1 2.2	60 25 50 5.5 	ns ns ns nC nC
$egin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline egin{array}{c} Drain-S \\ I_S \\ I_{SM} \\ \end{array}$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$R_{G} = 25 \ \Omega$ $V_{DS} = 400 \ V, I_{D} = 1.4 \ A,$ $V_{GS} = 10 \ V$ $(Note 4, 5)$ $Note 5$ $Note 6$ $Note 6$ $Note 6$ $Note 6$ $Note 7$ $Note 7$ $Note 8$ $Note 8$ $Note 8$ $Note 9$ $Note $		25 8 20 4.0 1.1 2.2	60 25 50 5.5 	ns ns ns nC nC
$egin{array}{l} t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \hline egin{array}{c} Drain-S \\ I_{S} \\ \hline \end{array}$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Fall Time	R_G = 25 Ω (Note 4, 5) V_{DS} = 400 V, I_D = 1.4 A, V_{GS} = 10 V (Note 4, 5) and Maximum Ratings ode Forward Current Forward Current	 	25 8 20 4.0 1.1 2.2	60 25 50 5.5 1.1 4.4	ns ns ns nC nC

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 120mH, I_{AS} = 1.1A, V_{DD} = 50V, R_G = 25 Ω, Starting T_J = 25°C 3. I_{SD} ≤ 1.4A, di/dt ≤ 200A/μs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width ≤ 300μs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature

Typical Characteristics

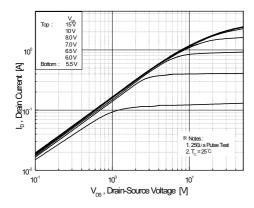


Figure 1. On-Region Characteristics

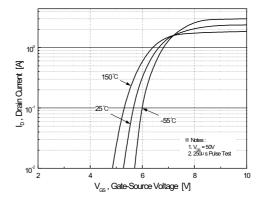


Figure 2. Transfer Characteristics

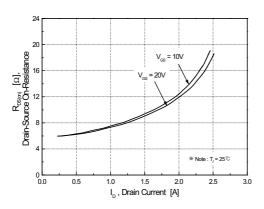


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

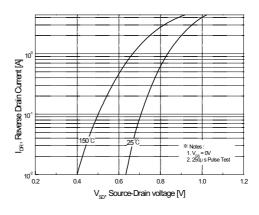


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

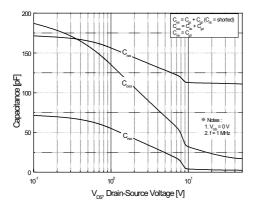


Figure 5. Capacitance Characteristics

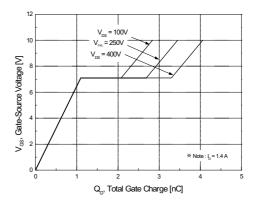


Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

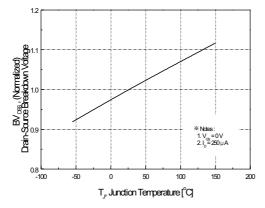


Figure 7. Breakdown Voltage Variation vs. Temperature

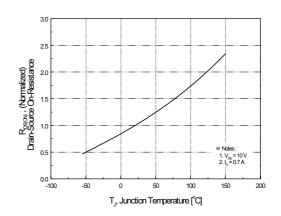


Figure 8. On-Resistance Variation vs. Temperature

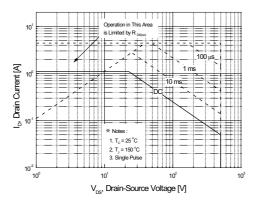


Figure 9. Maximum Safe Operating Area

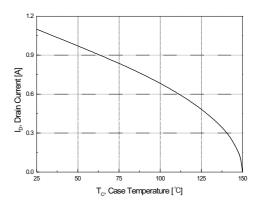
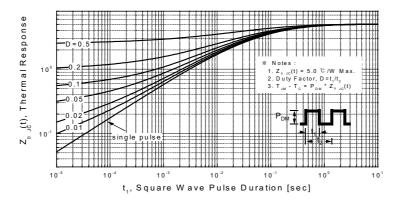
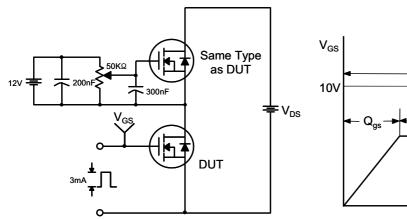
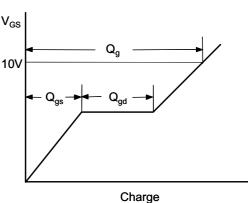
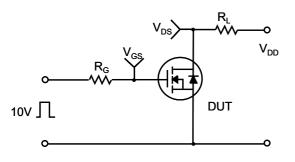
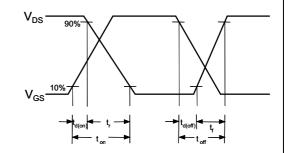
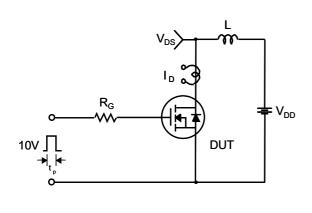


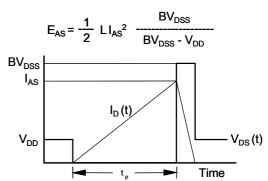
Figure 10. Maximum Drain Current vs. Case Temperature

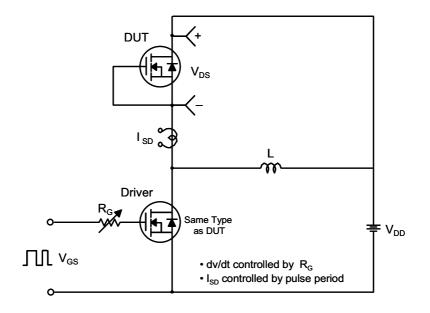




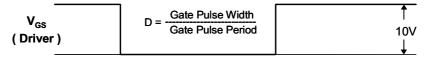

Figure 11. Transient Thermal Response Curve

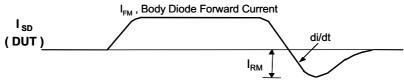

Gate Charge Test Circuit & Waveform

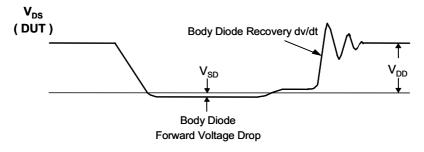


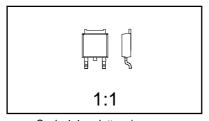

Resistive Switching Test Circuit & Waveforms



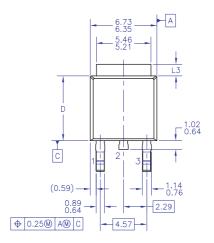

Unclamped Inductive Switching Test Circuit & Waveforms

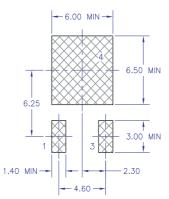


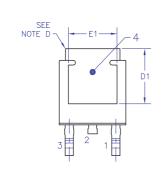

Peak Diode Recovery dv/dt Test Circuit & Waveforms

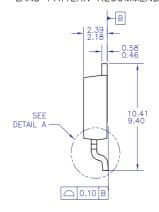

Body Diode Reverse Current

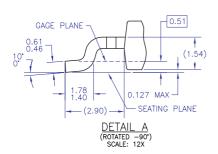
Package Dimensions


TO-252 (DPAK) (FS PKG Code 36)




Scale 1:1 on letter size paper Dimensions shown below are in: millimeters


Part Weight per unit (gram): 0.33



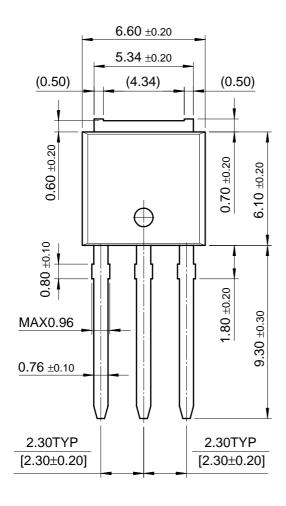
LAND PATTERN RECOMMENDATION

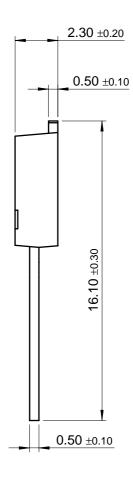
- NOTES: UNLESS OTHERWISE SPECIFIED

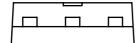
 A) ALL DIMENSIONS ARE IN MILLIMETERS.

 B) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE C, VARIATION AA & AB, DATED NOV. 1999.

 C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.


 D) HEAT SINK TOP EDGE COULD BE IN CHAMFERED CORNERS OR EDGE PROTRUSION.


 E) DIMENSIONS L3,D,E1&D1 TABLE:


	OPTION AA	OPTION AB
L3	0.89-1.27	1.52-2.03
D	5.97-6.22	5.33-5.59
E1	4.32 MIN	3.81 MIN
D1	5.21 MIN	4.57 MIN

IPAK

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™

CTL™ Current Transfer Logic™ EcoSPARK[®]

EfficentMax™ EZSWITCH™ *

airchild®

Fairchild Semiconductor® FACT Quiet Series™

FACT[®] FAST® FastvCore™ FlashWriter® * F-PFS™

FRFET® Global Power ResourceSM Green FPS™

Green FPS™ e-Series™ GTO™ IntelliMAX™

ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™

MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™ QFET®

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™

SMART START™ SPM® STEALTH™ SuperFET™

SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™

SYSTEM ® GENERAL

The Power Franchise®

pĕ⊎wer franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

EIFE SUPPORT FOLICES. FOR THE SUPPORT FOR THE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the application, and incleased cost of production and manufacturing delays. Fairchild is taking strong heastness to protect observes and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 137