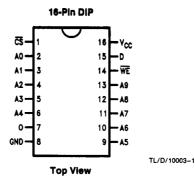


93L415A 1024 x 1-Bit Static Random Access Memory

General Description

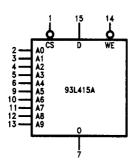
The 93L415A is a 1024-bit read write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.


Features

- New design to replace old 93415/93L415
- Improved ESD thresholds
- Alpha hard without die coat
- Commercial address access time 93L415A

25 ns max

- Features open collector output
- Power dissipation decreases with increasing temperature


Connection Diagram

Order Number 93L415ADC or 93L415APC See NS Package Number J16A* and N16E*

Optional Processing QR = Burn-In

Logic Symbol

Pin Names

Chip Select Input Active LOW	
Address Inputs	
Write Enable Input Active LOW	
Data Input	
Data Output	

TL/D/10003-3

V_{CC} = Pin 16 GND = Pin 8

^{*}For most current package information, contact product marketing.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Above which the useful life may be impaired

 Storage Temperature
 −65°C to +150°C

 Supply Voltage Range
 −0.5V to +7.0V

 Input Voltage (DC) (Note 1)
 −0.5V to V_{CC}

Input Current (DC) -12 mA to +5.0 mA

Voltage Applied to Outputs

Output Current

 (Note 2)
 -0.5V to 5.5V

 Lead Temperature (Soldering, 10 sec.)
 300°C

 Maximum Junction Temperature (T_J)
 + 175°C

Guaranteed Operating Ranges

Supply Voltage (V_{CC})

Commercial 5.0V ±5%

Case Temperature (T_C)
Commercial 0°C to \pm 75°C

DC Characteristics over operating temperature ranges (Note 3)

Symbol	Parameter Conditions Min		Min	Тур	Max	Units
V _{OL}	Output LOW Voltage	V _{CC} = Min, I _{OL} = 16 mA	I _{OL} = 16 mA		0.45	٧
V _{IH}	Input HIGH Voltage	Guaranteed Input HIGH Voltage for All Inputs (Notes 4, 5, & 6)	2.1			
V _{IL}	Input LOW Voltage	Guaranteed Input LOW Voltage for All Inputs (Notes 4, 5, & 6)	· 1		0.8	٧
lլլ	Input LOW Current	V _{CC} = Max, V _{IN} = 0.4V		180	-300	μΑ
I _{IH}	Input HIGH Current	V _{CC} = Max, V _{IN} = 4.5V	1.0		40	μΑ
I _{IHB}	Input Breakdown Current	$V_{CC} = Max, V_{IN} = V_{CC}$			1.0	mA
V _{IC}	Input Diode Clamp Voltage	$V_{CC} = Max, I_{IN} = -10 \text{ mA} \qquad -1.0$		-1.0	−1.5	٧
I _{CEX}	Output Leakage Current	V _{CC} = Max, V _{OUT} = 4.5V	1.0		100	μΑ
lcc	Power Supply Current	V _{CC} = Max, All Inputs = GND Output is Open			65	mA

+20 mA

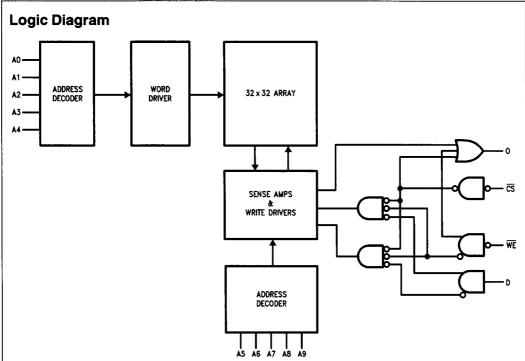
AC Electrical Characteristics	(Note 6) $V_{CC} = 5.0 \pm 5\%$, GND = 0V, $T_{C} = 0$ °C to + 75°C

Symbol	Parameter Conditions		Min	Max	Units
EAD TIMING			-		
t _{ACS}	Chip Select Access Time	Figures		15	ns
tRCS	Chip Select Recovery Time	3a, 3b		15	ns
t _{AA}	Address Access Time (Note 7)			25	ns
RITE TIMING					
t _W	Write Pulse Width to Guarantee Writing (Note 8)		20		ns
twsp	Data Setup Time Prior to Write		5		ns
twHD	Data Hold Time after Write		5		ns
^t wsa	Address Setup Time Prior to Write (Note 8)	Figure 4	5		ns
twha	Address Hold Time after Write		5		ns
twscs	Chip Select Setup Time Prior to Write		5		ns
twncs	Chip Select Hold Time after Write		5		ns
tws	Write Enable to Output Disable			15	ns
twR	Write Recovery Time			15	ns

Note 1: Either input voltage limit or input current limit sufficient to protect the inputs.

Note 2: Output current limit required.

Note 3: Typical values are at $V_{CC} = 5.0V$, $T_{C} = +25^{\circ}C$ and maximum loading.


Note 4: Tested under static condition only.

Note 5: Functional testing done at input levels $V_{IL}=0.45V$ (V_{OL} Max) and $V_{IH}=2.4V$ (V_{OH} Min).

Note 6: AC testing done at input levels $V_{IH} = 3V$, $V_{IL} = 0V$.

Note 7: The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

Note 8: t_W measured at $t_{WSA} = Min. t_{WSA}$ measured at $t_W = Min.$

TL/D/10003-2

Truth Table

	Inputs		Outputs	Mode	
CS	WE	D	0	Mode	
н	х	Х	н	Not Selected	
L	L	L	н	Write "0"	
L	L	Н	н	Write "1"	
L	Н	Х	DOUT	Read	

H = HIGH Voltage Level: 2.4V

L = LOW Voltage Level: 0.45V

X = Don't Care (HIGH or LOW)

Functional Description

The 93L415A is a fully decoded 1024-bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address A0 through A9.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93L415A are controlled by the state of the active low chip select (CS) input. The write function is controlled by the active low write enable (WE) input. With CS held low and WE held low, the data (D) is written into the memory location specified by addresses

(A0 through A9). To assure a valid write, data setup (twsp), address setup (twsA), data hold (twHD), and address hold (tWHA) times must be met. When WE is held HIGH and the chip selected, data is read from the addressed location and presented at the output O.

An open collector output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93L415As can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of RI value must be used to provide a HIGH at the output when the chip is deselected. Any RL value within the range specified below may be used.

$$\frac{V_{CC}\left(\text{Max}\right)}{I_{OL} - FO\left(1.6\right)} \leq R_{L} \leq \frac{V_{CC}\left(\text{Min}\right) - V_{OH}}{n\left(I_{CEX}\right) + FO\left(0.04\right)}$$

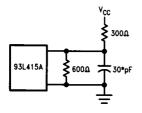
 R_I is in $k\Omega$

n = number of wired-OR outputs tied together

FO = number of TTL Unit Loads (UL) driven

I_{CEX} = Memory Output Leakage Current

VOH = Required Output HIGH Level at Output Node


IOL = Output LOW Current

The minimum R_L value is limited by the output current sinking ability. The maximum R_I value is determined by the output and input leakage current which must be supplied to hold the output at VOH.

One Unit Load = $40 \mu A HIGH/1.6 mA LOW$.

 $FO_{MAX} = 5 UL.$

Functional Description (Continued)

*Includes jig and probe capacitance FIGURE 1. AC Test Circuit

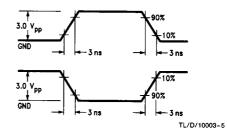
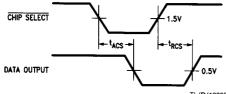
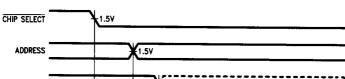



FIGURE 2. AC Test Input Levels



TL/D/10003-6 a. Read Mode Propagation Delay from Chip Select

1.57 ADDRESS DATA OUTPUT 1.57 TL/D/10003-7

b. Read Mode Propagation Delay from Address Valid

FIGURE 3. Read Mode Timing

TL/D/10003~4

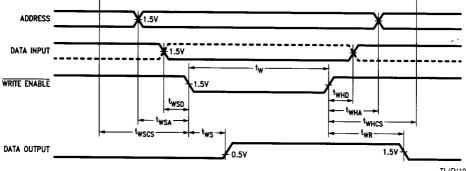


FIGURE 4. Write Mode Timing

TL/D/10003-8

Note 1: Timing Diagram represents one solution which results in an optimium cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Note 2: Input voltage levels for worst case AC test are 3.0V/0V.