
GEN2 SiC Schottky Diode LSIC2SD120A08, 1200 V, 8 A, TO-220-2L

LSIC2SD120A08

Circuit Diagram TO-220-2L

Description

This series of silicon carbide (SiC) Schottky diodes has negligible reverse recovery current, high surge capability, and a maximum operating junction temperature of 175 °C. These diodes series are ideal for applications where improvements in efficiency, reliability, and thermal management are desired.

• Extremely fast,

temperature-independent

switching behavior

Dramatically reduced

compared to Si bipolar

switching losses

diodes

• Solar inverters

• Industrial motor drives

• EV charging stations

HF RoHS PO

Features

- Positive temperature coefficient for safe operation and ease of paralleling
- 175 °C maximum operating junction temperature
- Excellent surge capability

Applications

- Boost diodes in PFC or DC/DC stages
- Switch-mode power supplies
- Uninterruptible power supplies

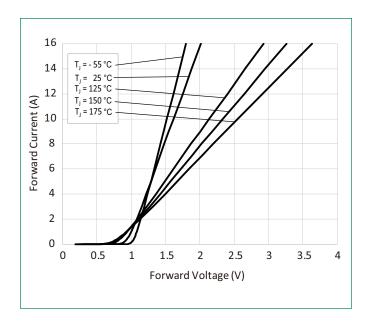
Environmental

- Littelfuse "RoHS" logo = RoHS RoHS conform
- Littelfuse "HF" logo = **HF** Halogen Free
- Littelfuse "PB-free" logo = 10 Pb-free lead plating

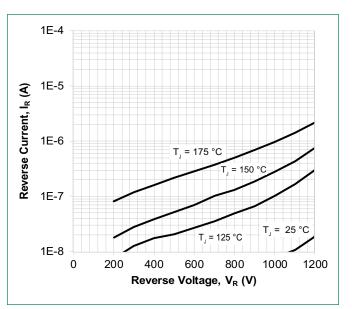
Maximum Ratings

-					
Characteristics	Symbol	Conditions	Value	Unit	
Repetitive Peak Reverse Voltage	V _{RRM}	-	1200	V	
DC Blocking Voltage	V _R	T _j = 25 °C	1200	V	
		$T_c = 25 \text{ °C}$	24.5		
Continuous Forward Current	I _F	T _c = 135 °C	12	A	
		T _c = 154 °C	8		
Non-Repetitive Forward Surge Current	I _{FSM}	$T_c = 25 \text{ °C}, T_p = 10 \text{ ms}, \text{ Half sine pulse}$	65	A	
Power Dissipation	D	$T_c = 25 \text{ °C}$	125		
Power Dissipation	P _{Tot}	T _c = 110 °C	54	A	
Operating Junction Temperature	TJ	-	-55 to 175	°C	
Storage Temperature	T _{STG}	-	-55 to 150	°C	
Soldering Temperature	T _{sold}	-	260	°C	

Electrical Characteristics


	Symbol		Value			
Characteristics		Conditions	Min.	Тур.	Max.	Unit
Forward Voltage	V _F	I _F = 8 A, T _J = 25 °C	-	1.5	1.8	V
		I _F = 8 A, Τ _J = 175 °C	-	2.2	-	
Reverse Current	I _R	V _R = 1200 V , T _J = 25 °C	-	<1	100	μA
		V _R = 1200 V , T _J = 175 °C	-	10		
Total Capacitance	С	V _R = 1 V, f=1 MHz	-	454	-	pF
		V _B = 400 V, f = 1 MHz	-	45	-	
		V _R = 800 V, f = 1 MHz	-	33	-	
Total Capacitive Charge	Q _c	$V_{R} = 800 \text{ V}, Q_{C} = \int_{0}^{V_{R}} C(V) dV$	-	47	-	nC

Footnote: $T_J = +25$ °C unless otherwise specified


Thermal Characteristics

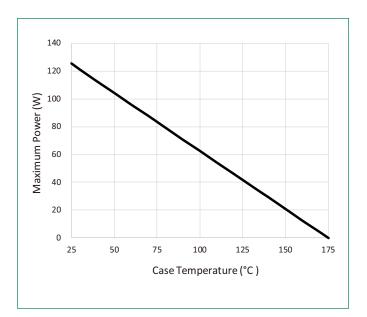
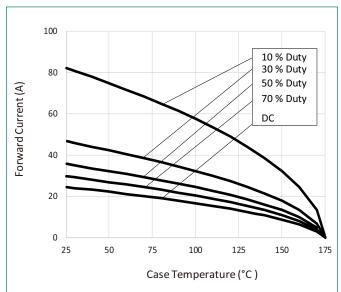
Characteristics		Symbol Conditions	Value			
	Symbol		Min.	Тур.	Max.	Unit
Thermal Resistance	R _{euc}	-	-	1.2	-	°C/W

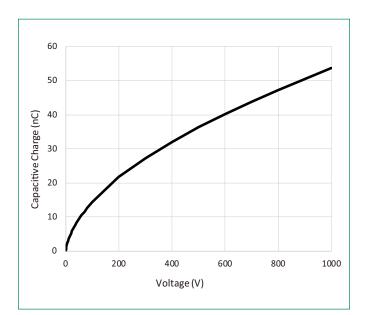
Figure 1: Typical Foward Characteristics

Figure 2: Typical Reverse Characteristics

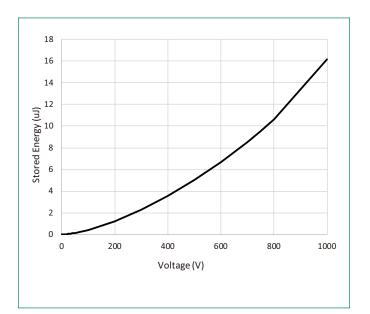
GEN2 SiC Schottky Diode LSIC2SD120A08, 1200 V, 8 A, TO-220-2L

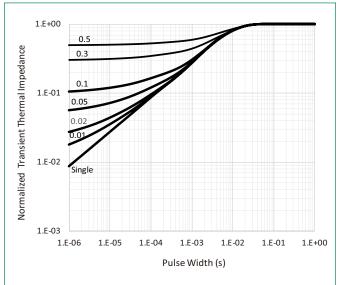
Figure 3: Power Derating


Figure 4: Current Derating

500 450 400 350 Capacitance (pF) 300 250 200 150 100 50 0 10 100 1000 1 Voltage (V)


Figure 5: Capacitance vs. Reverse Voltage


Figure 6: Capacitive Charge vs. Reverse Voltage

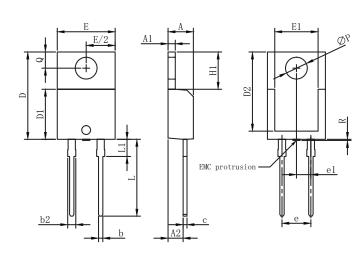
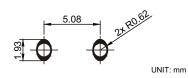
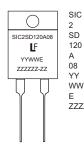


Figure 7: Stored Energy vs. Reverse Voltage



Dimensions-Package TO-220-2L

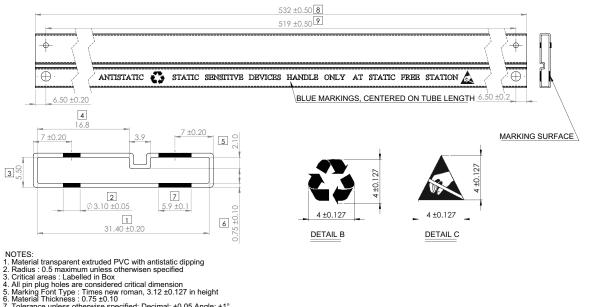
Recommended Solder Pad Layout



Symbol		Millimeters	
Symbol	Min	Nom	Max
А	4.32	4.45	4.70
A1	1.14	1.27	1.40
A2	2.20	-	2.74
b	0.69	-	0.90
b2	1.17	-	1.62
С	0.36	-	0.60
D	14.90	-	15.90
D1	8.62	-	9.40
D2	12.50	-	12.95
E	9.70	10.18	10.36
E1	7.57	7.61	8.30
e1	-	2.54	-
е	5.03	5.08	5.13
H1	6.30	6.55	6.80
L	12.88	13.50	14.00
L1	2.39	-	3.25
øP	3.50	3.84	3.96
Q	2.65	-	3.05
R	-	-	0.25

Figure 8: Transient Thermal Impedance

Part Numbering and Marking System


=	SiC Diode
=	Gen2
=	Schottky Dio

- ode = Voltage Rating (1200 V)
- = TO-220 Package (2 Lead)
- = Current Rating (8 A)
- = Year
- = Week
- = Special Code ZZZZZZ-ZZ = Lot Number

Packing Options

Part Number	Marking	Packing Mode	M.O.Q
LSIC2SD120A08	SIC2SD120A08	Tube	1000

Packing Specification (Tube for TO-220-2L)

- 7. Tolerance unless otherwise specified: Decimal: ±0.05 Angle: ±1° 8. Unit : Millimeter (mm)

Disclaimer Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.