

DATA SHEET

CURRENT SENSOR - LOW TCR AUTOMOTIVE GRADE

> PA_E series 5%, 1%, 0.5%

sizes 2512

RoHS compliant & Halogen free

YAGEO Phícomp

SCOPE

This specification describes PA series current sensor - low TCR with lead-free terminations made by metal substrate.

APPLICATIONS

- · Consumer goods
- Computer
- Telecom / Datacom
- Industrial / Power supply
- Alternative Energy
- · Car electronics

FEATURES

- · AEC-Q200 qualified
- Halogen-free Epoxy
- · RoHS compliant
- Reduce environmentally hazardous wastes
- High component and equipment reliability
- Non-forbidden materials used in products/production
- Low resistances applied to current sensing
- Anti-sulfur

ORDERING INFORMATION - GLOBAL PART NUMBER

Global part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

PA <u>XXXX</u> <u>X</u> <u>X</u> <u>X</u> <u>X</u> <u>XX</u> <u>XXXX</u> <u>E</u> (6) (7)

(I) SIZE

2512

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $| = \pm 5\%$

(3) PACKAGING TYPE

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

 $F = \pm 100 \text{ ppm/°C}$

 $M = \pm 75$ ppm/°C

 $E = \pm 50$ ppm/°C

(5) TAPING REEL

07 = 7 inch dia. Reel & standard power (1W)

7W = 7 inch dia. Reel & 2 x standard power (2W)

7T = 7 inch dia. Reel & $3 \times$ standard power (3W)

(6) RESISTANCE VALUE

0.5 m Ω to 100 m Ω

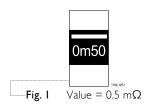
(7) DEFAULT CODE

Letter E is the system default code for ordering only. (Note)

number	Siobai pai c
Resistance code rule	Example
XUXX	$0U5 = 0.5 \text{m}\Omega$
0RXXX	$0R001 = 1 m\Omega$
(I to I00 m Ω)	$0R05 = 50 \text{ m}\Omega$

Resistance rule of global part

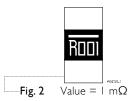
ORDERING EXAMPLE


The ordering code of a PA2512 IW chip resistor, TC100, value 0.003Ω with $\pm1\%$ tolerance, supplied in 7-inch tape reel is: PA2512FKF070R003E

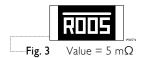
NOTE

I. All our RChip products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead-Free Process"

MARKING


PA2512

4 digits


The "m" is used as decimal point; the other 3 digits are significant and the unit is

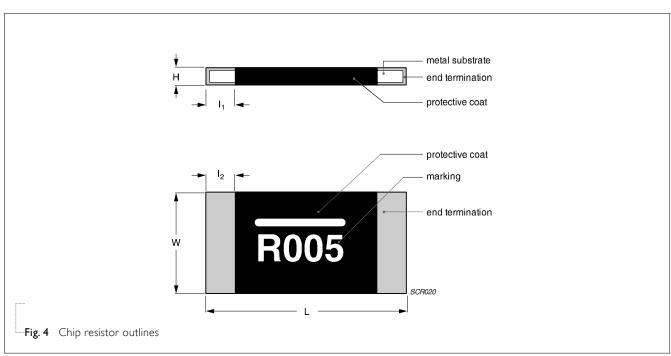
PA2512: $0.5m\Omega$ and $0.75m\Omega$

4 digits

The "R" is used as a decimal point; the other 3 digits are significant PA2512: $Im\Omega$ to 4 $m\Omega$

4 digits

The "R" is used as a decimal point; the other 3 digits are significant PA2512: 5 m Ω to 100 m Ω


CONSTRUCTION

The resistors are constructed using outstanding TCR level material, which makes Yageo PA resistors excellent for current sensing application in battery charger circuit & DC-DC converter.

The composition of the resistive material is adjusted to give the approximate required resistance and is covered with a protective coating. Marking is printed on the top side of the resistor.

Finally, the three external terminations (Cu / Ni / matte Tin) are added, as shown in Fig. 4.

Outlines

DIMENSION

Table I For outlines, please refer to Fig. 4

TYPE	RESISTANCE RANGE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
PA2512	$0.5 \text{m}\Omega \leq R \leq 0.75 \text{m}\Omega$	6.35±0.25	3.18±0.25	0.63±0.25	2.72±0.25	2.72±0.25
	$Im\Omega \le R \le 4m\Omega$	6.35±0.25	3.18±0.25	0.63±0.25	2.21±0.25	2.21±0.25
	$5m\Omega \le R \le 6m\Omega$	6.35±0.25	3.18±0.25	0.63±0.25	1.19±0.25	1.19±0.25
	$7m\Omega \le R \le 100m\Omega$	6.35±0.25	3.18±0.25	0.63±0.25	0.76±0.25	0.76±0.25

Note:

- 1. For relevant physical dimensions, please refer to construction outlines.
- 2. Please contact with sales offices, distributors and representatives in your region before ordering.

ELECTRICAL CHARACTERISTICS

Table 2

TYPE	SIZE	POWER RATING	TOLERANCE	resistance range	TEMPERATURE COEFFICIENT OF RESISTANCE
		IW	±0.5%		±50ppm/°C
PA	2512	2W	±1%	$0.5 \text{m}\Omega \leq R \leq 100 \text{m}\Omega$	±75ppm/°C
		3W	±5%		±100ppm/°C

Note: Please contact with sales offices, distributors and representatives in your region before ordering.

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

PA2512 Range: -55°C to +170°C

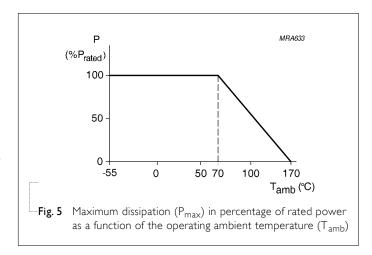
POWER RATING

Standard rated power at 70°C:

For detail power value, please refer to Table 2.

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(PxR)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

2512

SERIES

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	PA2512
Embossed taping reel (K)	7" (178 mm)	4,000

EMBOSSED TAPE

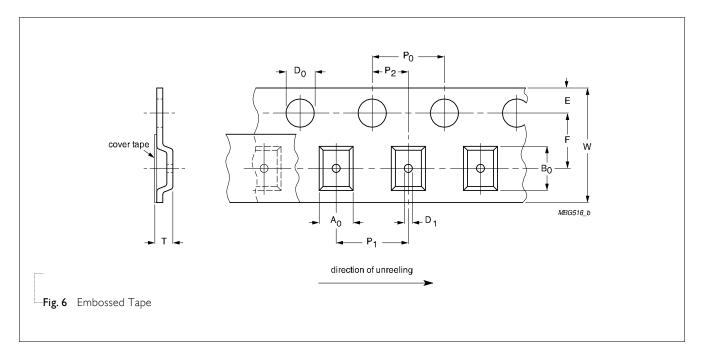


Table 4 Dimensions of embossed tape for relevant chip resistors size

SIZE	SYMBOL										Unit: mm
	A_0	B_0	W	E	F	P_0	P_{l}	P_2	$ØD_0$	ØD _I	Т
PA2512	2 3.40±0.15	6.70±0.15	12.00±0.30	1.75±0.10	5.50±0.10	4.00±0.10	4.00±0.10	2.00±0.10	1.55±0.05	1.50±0.10	0.80±0.15

Chip Resistor Surface Mount

6 10

REEL SPECIFICATION

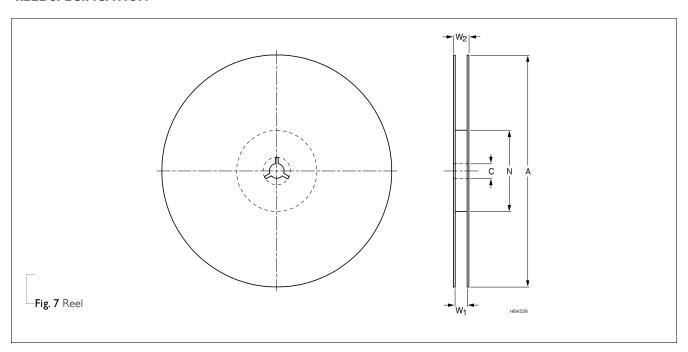
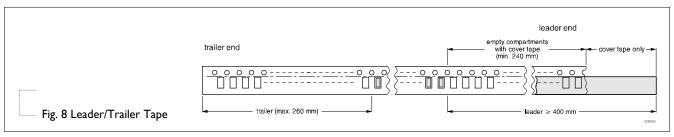
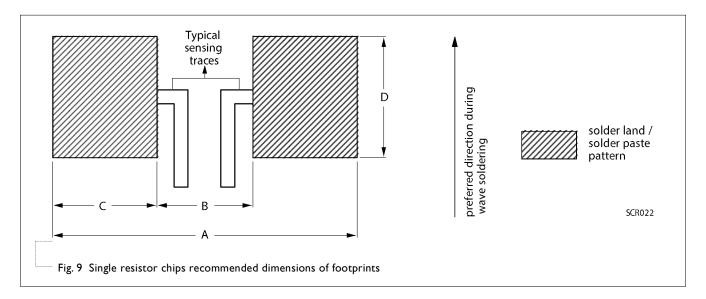



Table 5 Dimensions of reel specification for relevant chip resistors size

	OUANTITY -	REE	_ SIZE	SYMBOL					Unit: mm
SIZE	PER REEL	8 mm TAPE WIDE	I2 mm TAPE WIDE	Α	N	С	D	Wı	W _{2 MAX.}
PA2512	4000		7" (Ø178 mm)	178.0±1.0	60.0+1/-0	13.50±0.5	21.0±0.8	13.6±0.5	16.5±0.5

LEADER/TRAILER TAPE SPECIFICATION



SERIES

FOOTPRINT AND SOLDERING PROFILES

For recommended soldering profiles, please refer to data sheet "Chip resistors mounting".

FOOTPRINT

Table 6 Footprint dimensions

	RESISTANCE				Unit: mm
SIZE	RANGE	Α	В	С	D
	$0.5 \text{m}\Omega \leq R < \text{Im}\Omega$	7.36	0.50	3.43	3.68
PA2512	$Im\Omega \le R \le 4m\Omega$	7.37	1.27	3.05	3.68
	$5m\Omega \le R \le 6m\Omega$	7.40	3.18	2.11	3.68
	$7m\Omega \le R \le 100m\Omega$	7.36	4.06	1.65	3.68

TESTS AND REQUIREMENTS

Table 8 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENT
Short time overload	IEC60115-1 4.13	5 times of rated power for 5 seconds at room temperature	\pm (0.5%+0.0005 Ω) No visible damage
High Temperature Exposure	MIL-STD-202-Method 108	I,000 hours at maximum operating temperature depending on specification, unpowered	±(1.0%+0.0005 Ω)
		No direct impingement of forced air to the parts Tolerances: I70±3°C	
Temperature Cycling	JESD22-A104C	I,000 cycles, -55/+125°C for I cycle per hour	$\pm (0.5\% + 0.0005\Omega)$
Moisture Resistance	MIL-STD-202-Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25°C / 65°C 95% R.H, without steps 7a & 7b, unpowered	±(0.5%+0.0005 Ω)
Biased	MIL-STD-202 Method 103	1,000 hours; 85°C / 85% RH	$\pm (0.5\% + 0.0005 \Omega)$
Humidity		10% of operating power	
Operational Life/ Endurance	MIL-STD-202-Method 108	1,000 hours at 125±3°C, de-rated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	±(1.0%+0.0005 Ω)
		1,000 hours at 70±2°C applied RCWV	$\pm (1.0\% + 0.0005 \Omega)$
		1.5 hours on, 0.5 hour off, still air required	
Resistance to Solvents	MIL-STD-202 Method 215	Immerse in isopropyl alcohol for 5 min with ultrasonic at room temperature	No Visible damage
Mechanical Shock	MIL-STD-202 Method 213	Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen.	$\pm (0.5\% + 0.0005 \Omega)$
		Peak value: 100 g's	
		Duration: 6 ms	
		Velocity change: 12.3 ft/s	
		Waveform: Half sine	
Vibration	MIL-STD-202 Method 204	5 g's for 20 min., 12 cycles each of 3 orientations	$\pm (0.5\% + 0.0005 \Omega)$
		Test from 10-2000 Hz.	
Resistance to	MIL-STD-202-method 210	Condition B, no pre-heat of samples	$\pm (0.5\% + 0.0005\Omega)$
Soldering Heat		Leadfree solder, 260°C, 10 seconds immersion time	No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	
Thermal Shock	MIL-STD-202 Method 107	-55/+125°C, Number of cycles is 300.	±(0.5%+0.0005 Ω)
		Devices mounted.	No visible damage
		Maximum transfer time is 20 seconds.	
		Dwell time is 15 minutes. Air -Air	

Chip Resistor Surface Mount

PA_E

SERIES

2512

TEST	TEST METHOD	PROCEDURE	REQUIREMENT
Electrostatic	AEC-Q200-002	Human Body Model, I pos + I neg.	±(1.0%+0.0005 Ω)
Discharge		Discharges 2512=2KV	No visible damage
Solderability - Wetting	J-STD-002B test B	(a) Method B, aging 4 hours at 155°C dry heat, dipping at 235±3°C for 5±0.5 seconds.	Well tinned (>95% covered) No visible damage
		(b) Method B, steam aging 8 hours, dipping at 215±3°C for 5±0.5 seconds.	
		(c) Method D, steam aging 8 hours, dipping at 260±3 °C for 7±0.5 seconds.	
Flammability	UL94	Try to inflame a specimen by a needle flame	No ignition of specimen; V-0
Board Flex / Bending	AEC-Q200-005	Chips mounted on a 90mm glass epoxy resin PCB (FR4), Bending for 2512=2 mm	$\pm (1.0\% + 0.0005 \Omega)$
		Holding time: Min.60 seconds	
Terminal Strength (SMD)	AEC-Q200-006	Applied a 17.7N (1.8Kg) for 60 ± 1 seconds.	$\pm (1.0\% + 0.0005 \Omega)$ No visible damage
Flame Retardance	AEC-Q200-001	Apply voltage from 9V to 32V to increase the surface temp to 350°C	No flame, no explosion
Temperature	MIL-STD-202 Method 304	At +25/+150°C	Refer to table 2
Coefficient of		Formula:	
Resistance (T.C.R.)		T.C.R= $\frac{R_2 - R_i}{RI(t_2 - t_i)} \times I0^6 (ppm/^{\circ}C)$	
		Where	
		tl=+25°C or specified room temperature	
		t2=+150°C test temperature	
		RI = resistance at reference temperature in ohms	
		R2=resistance at test temperature in ohms	
Flower-of-Sulfur (FOS)	Modified ASTM B809-95	Sulfur 105°C, 750 hours, unpowered.	$\pm (1.0\% + 0.0005 \Omega)$

Product specification 10 10

Chip Resistor Surface Mount

PA_E SERIES 2512

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 10	Jan. 31, 2018	-	- Extend 0.5% Tolerance
Version 9	Nov. 21, 2017		- Extend resistor valu @f≦ r 3W Ω
Version 8	Oct. 23, 2017	-	$\begin{array}{ccc} \Omega & \leqq & \Omega \\ \text{- Update footprint dimensions} & & & & \\ \Omega & \leqq & & \Omega & & & \end{array}$
Version 7	Jul. 24, 2017	-	- Add part number coding details for the relationship between taping reel and rated power
Version 6	Apr. 19, 2017	-	- Extend resistor value
Version 5	Nov. 30, 2016	-	- Extend resistor value
Version 4	Oct. 27, 2016	-	- Modify the error of test procedure
Version 3	Mar. 31, 2016	-	- Update TCR $\Omega \subseteq \Omega$ ±
Version 2	Dec. 31, 2015	-	- Extend resistor value
Version I	Dec. 18, 2015	-	- Update tests and requirements

Ω≦ Ω Ω≦≦ Ω Ω≦ Ω

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

Chip Resistor Surface Mount

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.