

IRFPG40, IRFPG42

4.3A and 3.9A, 1000V, 3.5 and 4.2 Ohm, N-Channel Power MOSFETs

January 1998

Features

- IRFPG40: 4.3A, 1000V, $r_{DS(ON)} = 3.5\Omega$
- IRFPG42: 3.9A, 1000V, $r_{DS(ON)} = 4.2\Omega$
- UIS SOA Rating Curve (Single Pulse)
- -55°C to 150°C Operating and Storage Temperature
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

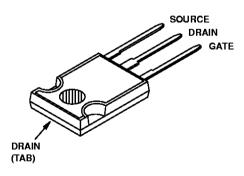
Ordering Information

PART NUMBER	PACKAGE	BRAND
IRFPG40	TO-247	IRFPG40
IRFPG42	TO-247	IRFPG42

NOTE: When ordering, include the entire part number.

Description

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.


Formerly developmental type TA09850.

Symbol

Packaging

JEDEC STYLE TO-247

IRFPG40, IRFPG42

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

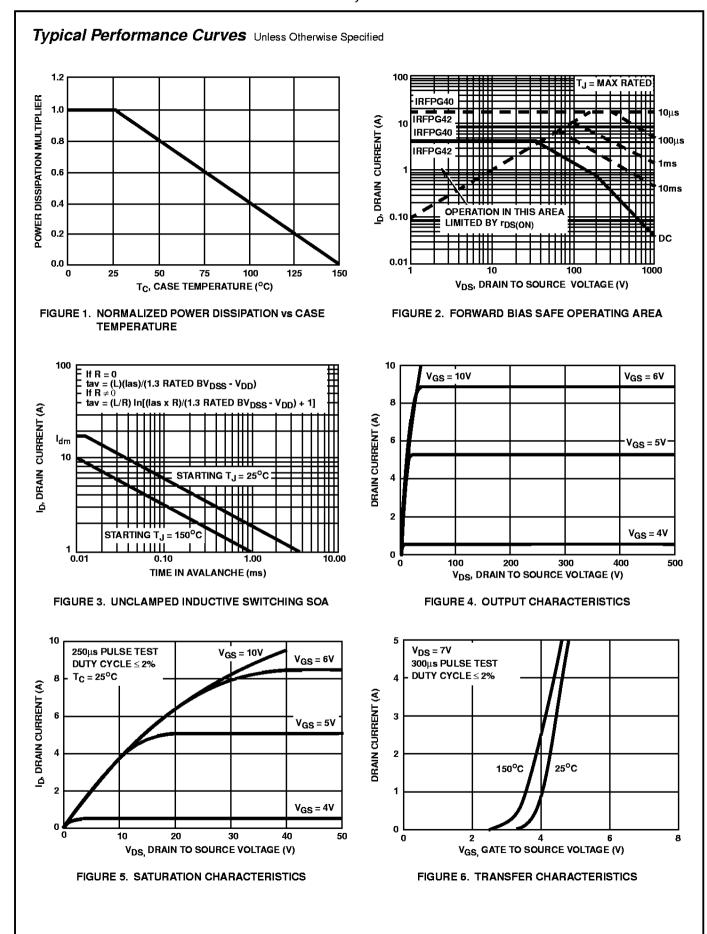
	IRFPG40	IRFPG42	UNITS
Drain to Source Voltage (Note 1)	1000	1000	V
Drain to Gate Voltage (Note 1)	1000	1000	V
Continuous Drain CurrentID	4.3	3.9	Α
Pulsed Drain Current (Note 3)	17	16	Α
Gate to Source Voltage	± 20	±20	V
Maximum Power Dissipation	150	150	W
Linear Derating Factor	1.2	1.2	W/ °C
Single Pulse Avalanche Energy Rating (Note 3) EAS	490	490	mJ
Operating and Storage Temperature Range	-55 to 150	-55 to 150	°C
Maximum Temperature for Soldering			
Leads at 0.063in (1.6mm) from Case for 10s	300	300	°C
Package Body for 10s, See Techbrief 334	260	260	°C

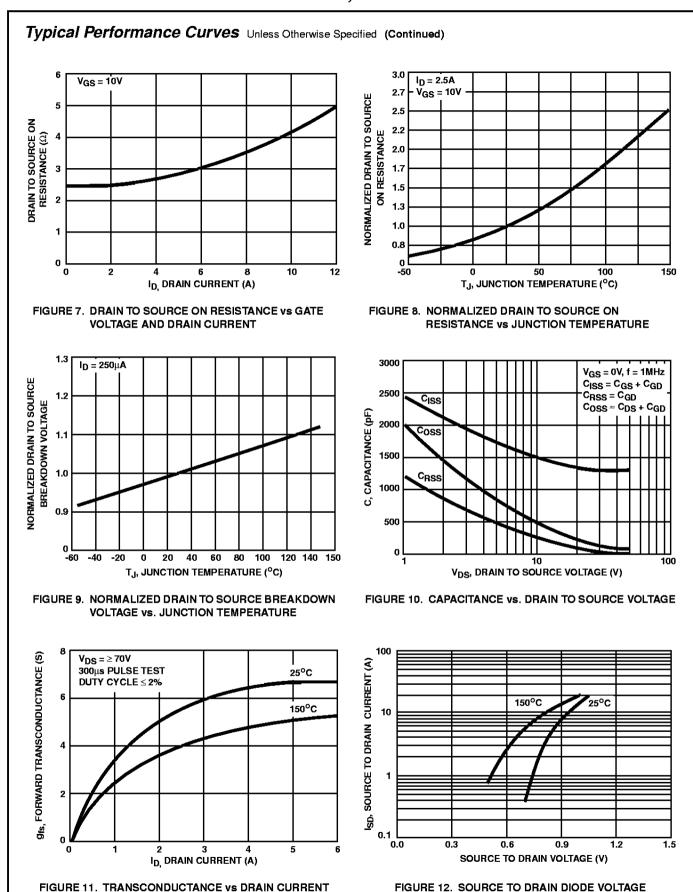
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications T_C = 25°C, Unless Otherwise Specified


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V, (Figure 9)	1000	-	٧
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D = 250μA	2.0	4.0	٧
Zero Gate Voltage Drain Current	l _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V	-	25	μΑ
		$V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = 0 \text{V}, T_J = 150 ^{\circ}\text{C}$	-	250	μΑ
Gate to Source Leakage Current	l _{GSS}	V _{GS} = ±20V	-	±100	nΑ
Drain to Source On Resistance (Note 2) IRFPG40	^r DS(ON)	I _D = 2.5A, V _{GS} = 10V, (Figures 7, 8)	-	3.5	Ω
IRFPG42		l l	-	4.2	Ω
Forward Transconductance (Note 2)	9fs	I _D = 2.5A, V _{DS} = 100V, (Figure 11)	3.5	-	S
Turn-On Delay Time	ta(ON)	V_{DD} = 500V, I = 3.9A, R_{G} = 9.1 Ω , R_{L} = 120 Ω V_{GS} = 10V, (See Figures 16, 17)	-	30	ns
Rise Time	t _r		-	50	ns
Turn-Off Delay Time	t _d (OFF)		-	170	ns
Fall Time	t _f		-	50	ns
Total Gate Charge	Q _{g(TOT)}	ID = 3.9A, VDS = 800V, VGS = 10V, (Figure 13, 18, 19)	-	120	пC
Thermal Resistance Junction to Case	R _{0JC}		-	0.83	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	Free Air Operation	-	40	°C/W


Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
Source to Drain Diode Voltage	V_{SD}	I _{SD} = 4.3A (Figure 12)	-	1.8	٧
Reverse Recovery Time	t _{rr}	$I_{SD} = 3.9A$, $dI_{SD}/dt = 100A/\mu s$	-	1000	ns

NOTES:

- 2. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 3. Repetitive rating: pulse width limited by maximum junction temperature.
- 4. V_{DD} = 25V, starting T_J = 25°C, L = 640 μ H, R_G = 25 Ω , peak I_{AS} = 9.2A (Figures 3, 14, 15).

Typical Performance Curves Unless Otherwise Specified (Continued)

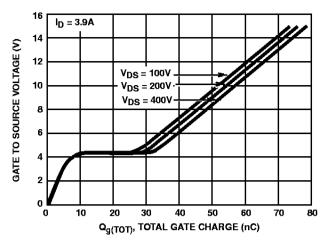


FIGURE 13. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

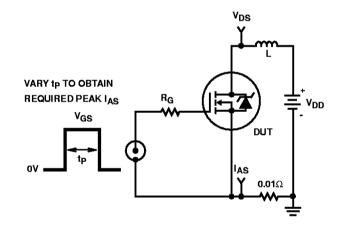


FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

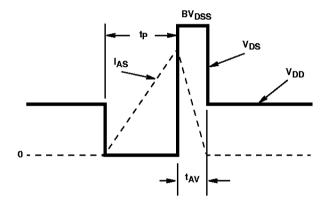


FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

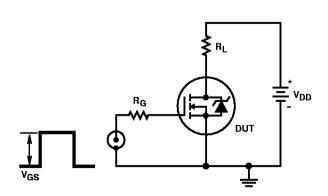


FIGURE 16. SWITCHING TIME TEST CIRCUIT

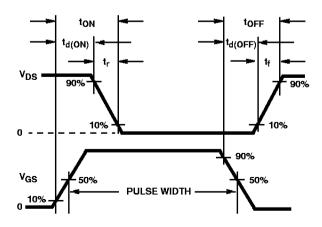


FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

Test Circuits and Waveforms (Continued)

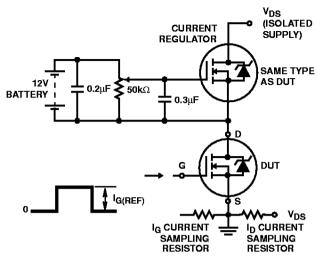


FIGURE 18. GATE CHARGE TEST CIRCUIT

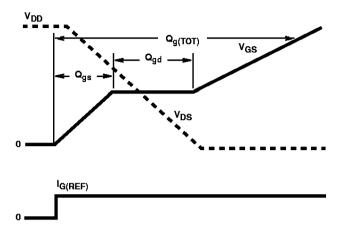


FIGURE 19. GATE CHARGE WAVEFORMS