

UJ4C075023K3S

Part Number	Package	Marking			
UJ4C075023K3S	TO-247-3L	UJ4C075023K3S			

750V-23m Ω SiC FET

Rev. B, July 2021

Description

The UJ4C075023K3S is a 750V, $23m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-3L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 23mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 84nC
- Low body diode V_{FSD}: 1.23V
- ◆ Low gate charge: Q_G = 37.8nC
- ◆ Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected: HBM class 2 and CDM class C3

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		750	V
Cata acuma valtaga	V	DC	-20 to +20	V
Gate-source voltage	V_{GS}	AC (f > 1Hz)	-25 to +25	V
Continuous drain current ¹		T _C = 25°C	66	Α
Continuous drain current	I _D	T _C = 100°C	49	Α
Pulsed drain current ²	I _{DM}	T _C = 25°C	196	Α
Single pulsed avalanche energy ³	E _{AS}	$L=15mH$, $I_{AS}=3A$	67	mJ
SiC FET dv/dt ruggedness	dv/dt	$V_{DS} \leq 500V$	150	V/ns
Power dissipation	P _{tot}	T _C = 25°C	306	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T_J,T_STG		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	T _L		250	°C

- 1. Limited by $T_{J,max}$
- 2. Pulse width t_p limited by $T_{J,max}$
- 3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
			Min	Тур	Max	Offics
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.38	0.49	°C/W

Rev. B, July 2021

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions		Units		
			Min	Тур	Max	Offics
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_D =1mA	750			V
Total drain leakage current		V _{DS} =750V, V _{GS} =0V, T _I =25°C		2	30	- μΑ
	I _{DSS}	V _{DS} =750V, V _{DS} =0V, T _J =175°C		15		
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		6	± 20	μА
Drain-source on-resistance	R _{DS(on)}	V_{GS} =12V, I_D =40A, T_J =25°C		23	29	
		V _{GS} =12V, I _D =40A, T _J =125°C		39		mΩ
		V _{GS} =12V, I _D =40A, T _J =175°C		50		
Gate threshold voltage	$V_{G(th)}$	V_{DS} =5V, I_D =10mA	4	4.8	6	V
Gate resistance	R_{G}	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions		Units		
			Min	Тур	Max	Units
Diode continuous forward current ¹	I _S	T _C = 25°C			66	Α
Diode pulse current ²	I _{S,pulse}	T _C = 25°C			196	А
Forward voltage	V_{FSD}	V _{GS} =0V, I _S =20A, T _J =25°C		1.23	1.39	V
		V _{GS} =0V, I _S =20A, T _J =175°C		1.45		
Reverse recovery charge	Q _{rr}	V_R =400V, I_S =40A, V_{GS} =0V, R_{G_EXT} =5 Ω		84		nC
Reverse recovery time	t _{rr}	di/dt=1500A/μs, Τ _J =25°C		27		ns
Reverse recovery charge	Q _{rr}	V_R =400V, I_S =40A, V_{GS} =0V, R_{G_EXT} =5 Ω		91		nC
Reverse recovery time	t _{rr}	di/dt=1500A/μs, Τ _J =150°C		28		ns

Typical Performance - Dynamic

.	Compelled I	Symbol Test Conditions	Value			
Parameter	Symbol		Min	Тур	Max	- Units
Input capacitance	C _{iss}	V _{DS} =400V, V _{GS} =0V		1400		
Output capacitance	C _{oss}	f=100kHz		93		pF
Reverse transfer capacitance	C_{rss}			2.5		
Effective output capacitance, energy related	C _{oss(er)}	V _{DS} =0V to 400V, V _{GS} =0V		116		pF
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		232		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		9.3		μЈ
Total gate charge	Q_{G}	V _{DS} =400V, I _D =40A,		37.8		
Gate-drain charge	Q_{GD}	$V_{DS} = 400V, I_D = 40A,$ $V_{GS} = 0V \text{ to } 15V$		8		nC
Gate-source charge	Q_{GS}	VGS 0V to 13 V		11.8		
Turn-on delay time	t _{d(on)}			10		- ns
Rise time	t _r	Notes 4 and 5, V_{DS} =400V, I_D =40A, Gate		49		
Turn-off delay time	$t_{d(off)}$	Driver = 0V to +15V,		53		
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		14		
Turn-on energy including R _S energy	E _{ON}	Turn-off $R_{G,EXT}$ =5 Ω , inductive Load, FWD:		455		μJ
Turn-off energy including R _S energy	E _{OFF}	same device with $V_{GS} = 0V$		140		
Total switching energy	E _{TOTAL}	and $R_G = 5\Omega$, RC snubber:		595		
Snubber R _S energy during turn-on	E _{RS_ON}	R_S =10 Ω and C_S =200pF, T_1 =25°C		4		
Snubber R _S energy during turn-off	E _{RS_OFF}			10		
Turn-on delay time	t _{d(on)}			15		
Rise time	t _r	Notes 4 and 5, V _{DS} =400V, I _D =40A, Gate		47		
Turn-off delay time	$t_{d(off)}$	V_{DS} = 400 V, I_D = 40A, Gate Driver = 0V to +15V,		51		ns ns
Fall time	t _f	Turn-off $R_{G,EXT}$ =1 Ω , Turn-off $R_{G,EXT}$ =5 Ω , inductive Load, FWD: same device with V_{GS} = 0V and		14		
Turn-on energy including R _S energy	E _{ON}			505		
Turn-off energy including R _S energy	E _{OFF}			157		
Total switching energy	E _{TOTAL}	$R_G = 5\Omega$, RC snubber:		662		μJ
Snubber R _S energy during turn-on	E _{RS_ON}	R_S =10 Ω and C_S =200pF, T_J =150°C		4		·
Snubber R _S energy during turn-off	E _{RS_OFF}			10		-

^{4.} Measured with the switching test circuit in Figure 35.

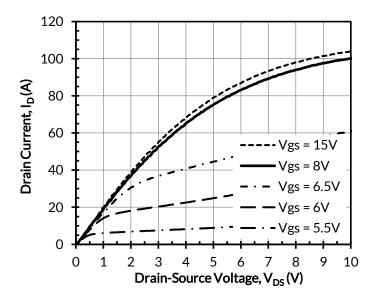
^{5.} In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.

Typical Performance - Dynamic (continued)

Parameter	Symbol	Test Conditions –	Value			Units
			Min	Тур	Max	Offics
Turn-on delay time	t _{d(on)}			10		
Rise time	t _r	Note 6, V _{DS} =400V, I _D =40A, Gate		45		ns
Turn-off delay time	t _{d(off)}	Driver =0V to +15V,		50		115
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		11		
Turn-on energy including R _S energy	E _{ON}	Turn-off $R_{G,EXT} = 5\Omega$, inductive Load, FWD:		366		
Turn-off energy including R _S energy	E _{OFF}	UJ3D06520TS, RC		135		
Total switching energy	E _{TOTAL}	snubber: R_S =10 Ω and C_S =200pF,		501		μJ
Snubber R _S energy during turn-on	E _{RS_ON}	- С _S -200рг, Т _J =25°C		4.4		
Snubber R _S energy during turn-off	E _{RS_OFF}			10		
Turn-on delay time	t _{d(on)}			10		
Rise time	t _r	Note 6, V _{DS} =400V, I _D =40A, Gate		47		ns
Turn-off delay time	t _{d(off)}	Driver =0V to +15V,		53		115
Fall time	t _f	Turn-on $R_{G,EXT}=1\Omega$,		17		
Turn-on energy including R _S energy	E _{ON}	Turn-off $R_{G,EXT}$ = 5Ω , inductive Load, FWD: UJ3D06520TS, RC snubber: R_s = 10Ω and C_s = $200pF$, T_J = 150° C		450		
Turn-off energy including R_S energy	E _{OFF}			157		
Total switching energy	E _{TOTAL}			607		μJ
Snubber R _S energy during turn-on	E _{RS_ON}			4.4		
Snubber R _S energy during turn-off	E _{RS_OFF}			10		

^{6.} Measured with the switching test circuit in Figure 36.

Rev. B, July 2021


Typical Performance Diagrams

120 100 Drain Current, I_D (A) 80 60 Vgs = 15V Vgs = 8V 40 Vgs = 7V- Vgs = 6.5V 20 Vgs = 6V 0 1 2 3 5 10 Drain-Source Voltage, $V_{DS}(V)$

Figure 1. Typical output characteristics at T_J = - 55°C, tp < 250 μ s

Figure 2. Typical output characteristics at $T_J = 25$ °C, tp < 250 μ s

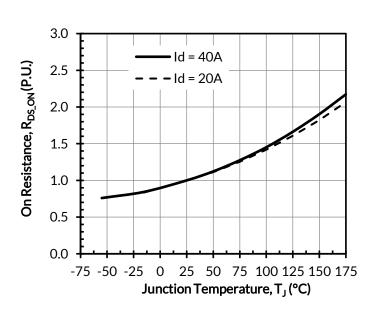
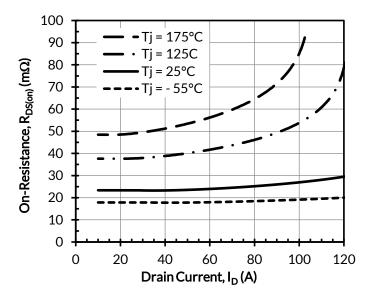


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V



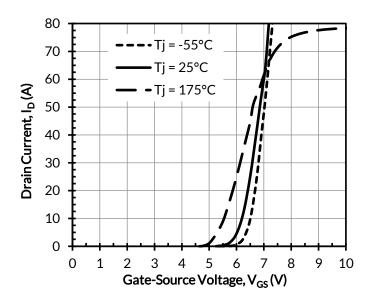
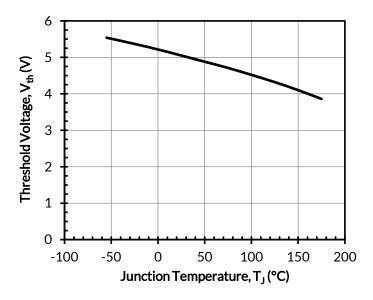



Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

Figure 6. Typical transfer characteristics at V_{DS} = 5V

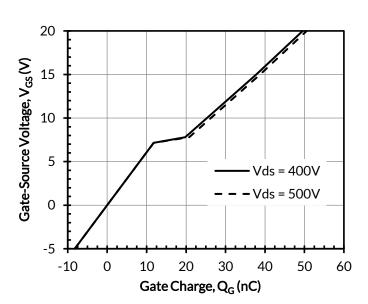


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

Figure 8. Typical gate charge at $I_D = 40A$

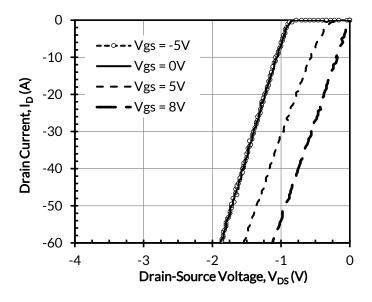


Figure 9. 3rd quadrant characteristics at $T_J = -55$ °C

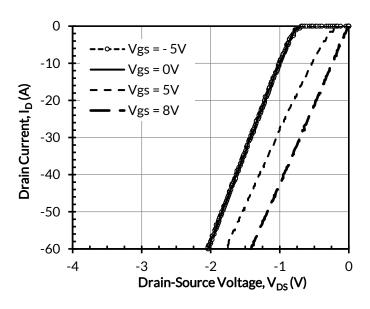


Figure 10. 3rd quadrant characteristics at T_J = 25°C

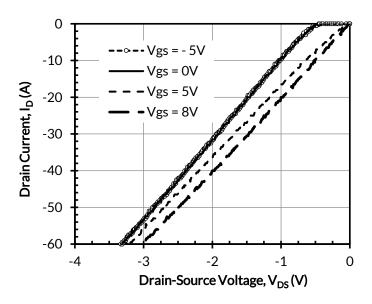


Figure 11. 3rd quadrant characteristics at $T_J = 175$ °C

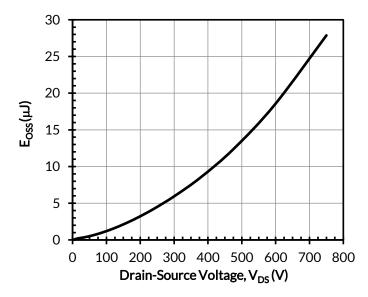
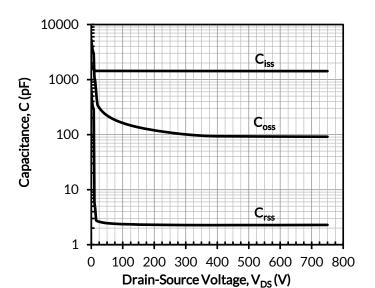
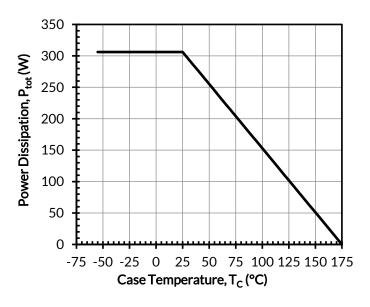


Figure 12. Typical stored energy in C_{OSS} at $V_{GS} = 0V$





80 70 60 40 40 40 20 10 -75 -50 -25 0 25 50 75 100 125 150 175 Case Temperature, T_c (°C)

Figure 13. Typical capacitances at f = 100kHz and $V_{GS} = 0V$

Figure 14. DC drain current derating

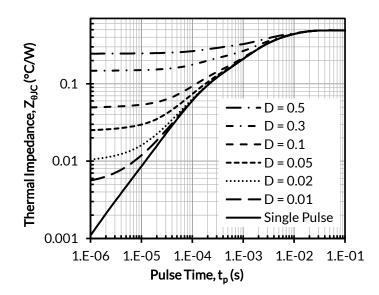


Figure 15. Total power dissipation

Figure 16. Maximum transient thermal impedance

100

80

175

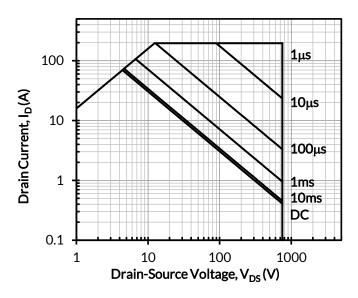
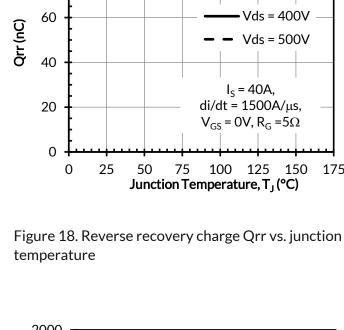



Figure 17. Safe operation area at $T_C = 25$ °C, D = 0, Parameter t_p

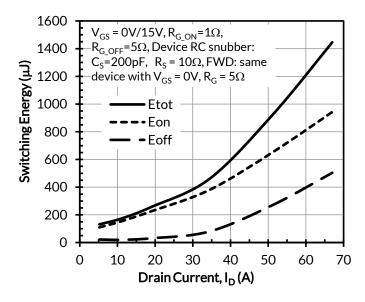


Figure 19. Clamped inductive switching energy vs. drain current at $V_{DS} = 400V$ and $T_J = 25$ °C

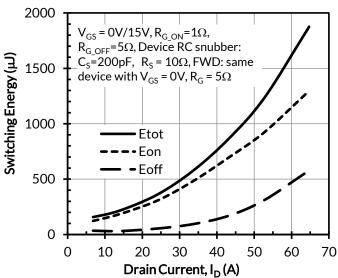
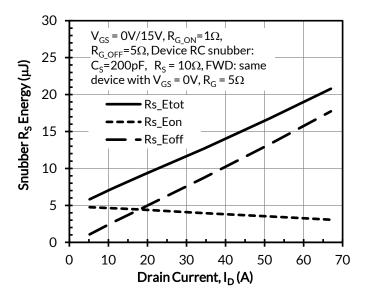


Figure 20. Clamped inductive switching energy vs. drain current at $V_{DS} = 500V$ and $T_J = 25$ °C



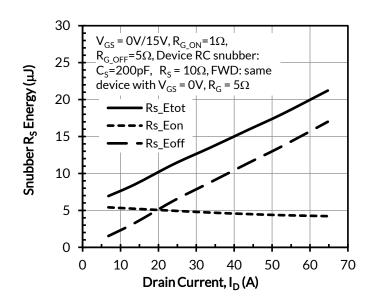
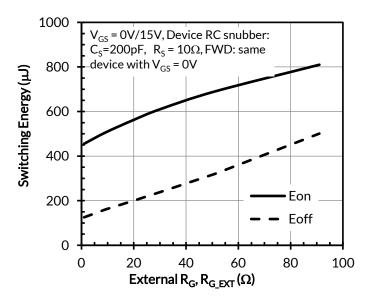



Figure 21. RC snubber energy loss vs. drain current at $V_{DS} = 400V$ and $T_J = 25^{\circ}C$

Figure 22. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C

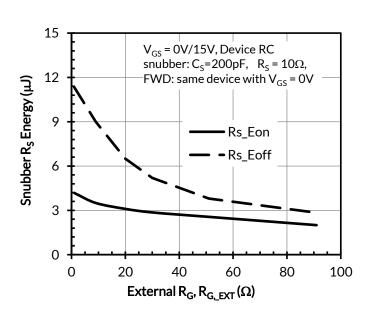
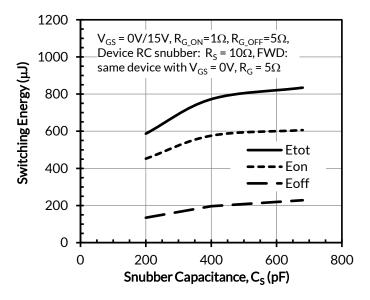
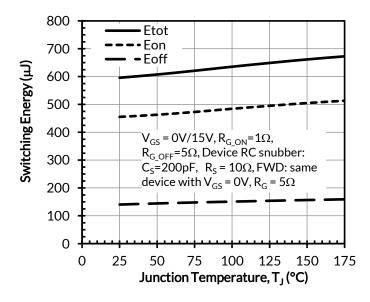


Figure 23. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 40A, and T_J = 25°C

Figure 24. RC snubber energy losses vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 40A, and T_I = 25°C





70 $V_{GS} = 0V/15V, R_{GON} = 1\Omega, R_{GOFF} = 5\Omega,$ 60 Device RC snubber: $R_S = 10\Omega$, FWD: same device with $V_{GS} = 0V$, $R_G = 5\Omega$ Snubber R_s Energy (μJ) 50 Rs_Etot 40 ·Rs_Eon - Rs_Eoff 30 20 10 0 0 200 400 600 800 Snubber Capacitance, C_S (pF)

Figure 25. Clamped inductive switching energies vs. snubber capacitance C_S at V_{DS} = 400V, I_D = 40A, and T_I = 25°C

Figure 26. RC snubber energy losses vs. snubber capacitance C_S at V_{DS} = 400V, I_D = 40A, and T_J = 25°C

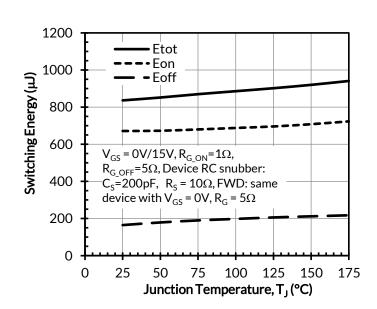


Figure 27. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_{D} = 40A

Figure 28. Clamped inductive switching energy vs. junction temperature at V_{DS} = 500V and I_D = 40A

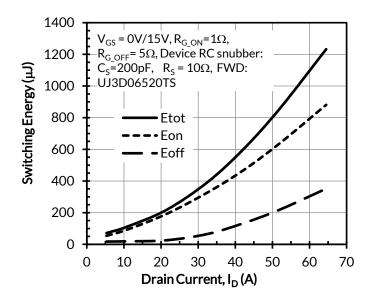


Figure 29. Clamped inductive switching energy vs. drain current at $V_{DS} = 400V$ and $T_J = 25$ °C

Figure 30. Clamped inductive switching energy vs. drain current at $V_{DS} = 500V$ and $T_J = 25$ °C

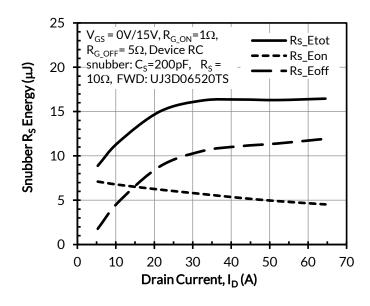


Figure 31. RC snubber energy losses vs. drain current at V_{DS} = 400V and T_J = 25°C

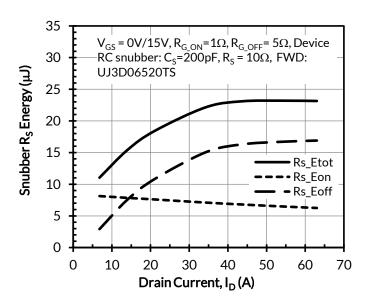
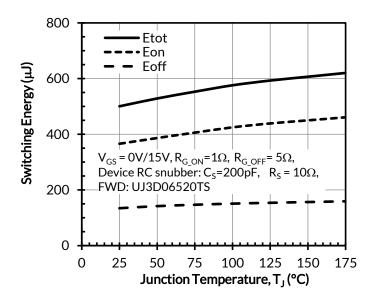
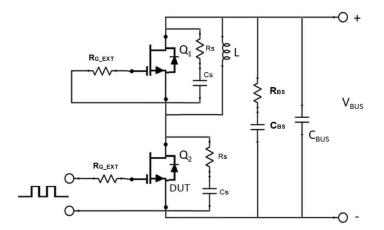


Figure 32. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C





1000 Etot Eon **Eoff** 800 Switching Energy (µJ) 600
$$\begin{split} V_{GS} = 0V/15V, R_{G_ON} = & 1\Omega, R_{G_OFF} = 5\Omega, \\ \text{Device RC snubber: } C_S = & 200\text{pF}, \quad R_S = 10\Omega, \end{split}$$
400 FWD: UJ3D06520TS 200 0 0 25 75 100 125 150 Junction Temperature, T₁ (°C)

Figure 33. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_{D} = 40A

Figure 34. Clamped inductive switching energy vs. junction temperature at V_{DS} = 500V and I_D = 40A

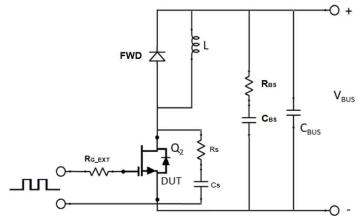


Figure 35. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS} =100nF) is used to reduce the power loop high frequency oscillations.

Figure 36. Schematic of the chopper mode switching test circuit. Note, a bus RC snubber (R_{BS} = 2.5 Ω , C_{BS} =100nF) is used to reduce the power loop high frequency oscillations.

SiC FETs are enhancement-mode power switches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{DS(on)}$), output capacitance (C_{oss}), gate charge (Q_G), and reverse recovery charge (Q_{rr}) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the FET is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on SiC FET operation, see www.unitedsic.com.

A snubber circuit with a small $R_{(G)}$, or gate resistor, provides better EMI suppression with higher efficiency compared to using a high $R_{(G)}$ value. There is no extra gate delay time when using the snubber circuitry, and a small $R_{(G)}$ will better control both the turn-off $V_{(DS)}$ peak spike and ringing duration, while a high $R_{(G)}$ will damp the peak spike but result in a longer delay time. In addition, the total switching loss when using a snubber circuit is less than using high $R_{(G)}$, while greatly reducing $E_{(OFF)}$ from mid-to-full load range with only a small increase in $E_{(ON)}$. Efficiency will therefore improve with higher load current. For more information on how a snubber circuit will improve overall system performance, visit the UnitedSiC website at www.unitedsic.com

Disclaimer

UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein.