



### **General Description**

The MAX4951BE dual-channel buffer is ideal to redrive serial ATA (SATA) I, SATA II, and SATA III signals and features high electrostatic discharge (ESD) ±8kV Human Body Model (HBM) protection. The MAX4951BE can be placed nearly anywhere on the motherboard to overcome board losses and produce an eSATA-compatible signal level. This device is SATA specification v.2.6 (gold standard)-compliant, while overcoming losses in the PCB and eSATA connector.

The MAX4951BE features very low standby current for power-sensitive applications. This device features hardware SATA-drive cable detection, keeping the power low in standby mode. The device also features an independent channel, dynamic power-down mode where power consumption is reduced when no input signal is present.

The MAX4951BE preserves signal integrity at the receiver by reestablishing full output levels and can reduce the total system jitter (TJ) by providing input equalization. This device features channel-independent digital preemphasis controls to drive SATA outputs over longer trace lengths or to meet eSATA specifications. SATA Out-Of-Band (OOB) signaling is supported using highspeed OOB signal detection on the inputs and squelch on the corresponding outputs. Inputs and outputs are all internally  $50\Omega$  terminated and must be AC-coupled to the SATA controller IC and SATA device.

The MAX4951BE operates from a single +3.3V (typ) supply, and is available in a small, 4mm x 4mm TQFN package with flow-through traces for ease of layout. This device is specified over the 0°C to +70°C operating temperature range.

#### **Applications**

Laptop Computers

Servers

**Desktop Computers** 

**Docking Stations** 

Data Storage/Workstations

#### **Features**

- ♦ Single +3.3V Supply Operation
- ♦ Low-Power, 500µA (typ) eSATA Cable Detect
- Drive Detection
- ♦ Dynamic Power Reduction **Reduced Power Consumption in Active Mode**
- ♦ Fixed Input Equalization **Permits Longer Traces Leading to the Device**
- **♦ Selectable Output Preemphasis** Improved Output Eye
- ◆ SATA I (1.5Gbps) and SATA II (3.0Gbps) Compliant
- **◆ SATA III (6.0Gbps) Compliant**
- ♦ Supports eSATA Output Levels
- Supports SATA OOB Signaling
- ♦ OOB Detection: 8ns (max)
- ♦ Internal Input/Output 50Ω Termination Resistors
- ◆ Inline Signal Traces for Flow-Through Layout
- ♦ Space-Saving, 4mm x 4mm TQFN Package with **Exposed Pad**
- ♦ High ESD Protection on All Pins: ±8kV (HBM)

### **Ordering Information**

| PART          | <b>TEMP RANGE</b> | PIN-PACKAGE |
|---------------|-------------------|-------------|
| MAX4951BECTP+ | 0°C to +70°C      | 20 TQFN-EP* |

<sup>+</sup>Denotes a lead(Pb)-free/RoHS-compliant package.

<sup>\*</sup>EP = Exposed pad.

#### **ABSOLUTE MAXIMUM RATINGS**

| (All voltages referenced to GND unless otherwise noted.) VCC0.3V to +4.0V |
|---------------------------------------------------------------------------|
| AINP, AINM, BINP, BINM, EN, CAD,                                          |
| PA, PB (Note 1)0.3V to (VCC +0.4V)                                        |
| Short-Circuit Output Current                                              |
| (BOUTP, BOUTM, AOUTP, AOUTM)±30mA                                         |
| Continuous Current at Inputs                                              |
| (AINP, AINM, BINP, BINM)±5mA                                              |

| Continuous Power Dissipation ( $T_A = +70^{\circ}C$ ) |                |
|-------------------------------------------------------|----------------|
| TQFN (derate 25.6mW/°C above +70°C)                   | 2051mW         |
| ESD Protection on All Pins (HBM)                      | ±8kV           |
| Operating Temperature Range                           | 0°C to +70°C   |
| Storage Temperature Range                             | 55°C to +150°C |
| Lead Temperature (soldering, 10s)                     | +300°C         |
| Soldering Temperature (reflow)                        | +260°C         |
|                                                       |                |

Note 1: All I/O pins are clamped by internal diodes.

### **PACKAGE THERMAL CHARACTERISTICS (Note 2)**

TOFN

Junction-to-Ambient Thermal Resistance (θJA).......39°C/W Junction-to-Case Thermal Resistance (θJC)......6°C/W

**Note 2:** Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <a href="https://www.maxim-ic.com/thermal-tutorial">www.maxim-ic.com/thermal-tutorial</a>.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS**

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, C_L = 12 \text{nF}, R_L = 50\Omega, T_A = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}, \text{ unless otherwise noted.}$  Typical values are at  $V_{CC} = +3.3 \text{V}, T_A = +25^{\circ}\text{C}.)$  (Note 3)

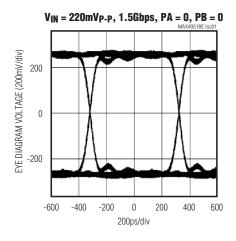
| PARAMETER                      | SYMBOL                       | CON                                                 | DITIONS                                                   | MIN | TYP      | MAX      | UNITS |  |
|--------------------------------|------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-----|----------|----------|-------|--|
| Operating Power-Supply Range   | Vcc                          |                                                     |                                                           | 3.0 |          | 3.6      | V     |  |
| Operating Supply Current       | loo                          | PA = PB = V <sub>CC</sub> ;<br>D10.2 pattern, f = 1 | PA = PB = V <sub>CC</sub> ;<br>D10.2 pattern, f = 1.5Gbps |     | 77       | 92       | - mA  |  |
| Operating Supply Current       | ICC                          | PA = PB = GND;<br>D10.2 pattern, f = 1.5Gbps        |                                                           |     | 62       | 76       | IIIA  |  |
| Average Supply Current in      |                              | Duty cycle is 25%                                   | Preemphasis on                                            |     | 30       |          | A     |  |
| Normal Operation               |                              | active, 75% idle;<br>D10.2 pattern                  | Preemphasis off                                           |     | 26       |          | mA    |  |
| Standby Supply Current         | ISTBY                        | $EN = GND \text{ or } \overline{CAD} = VCC$         |                                                           |     | 500      | 750      | μΑ    |  |
| Dynamic Power-Down Current     | IDYNPD                       |                                                     |                                                           |     | 14       | 20       | mA    |  |
| Single-Ended Input Resistance  | Z <sub>RX-SE-DC</sub>        | Single-ended to V <sub>CC</sub> (Note 4)            |                                                           | 40  | 50       |          | Ω     |  |
| Differential Input Resistance  | Z <sub>RX-DIFF</sub> -<br>DC | (Note 4)                                            |                                                           | 85  | 100      | 115      | Ω     |  |
| Single-Ended Output Resistance | Z <sub>TX</sub> -SE-DC       | Single-ended to VC                                  | C (Note 4)                                                | 40  | 50       |          | Ω     |  |
| Differential Output Resistance | ZTX-DIFF-DC                  | (Note 4)                                            |                                                           | 85  | 100      | 115      | Ω     |  |
| AC PERFORMANCE                 |                              |                                                     |                                                           | •   |          |          |       |  |
|                                |                              | f = 150MHz to 300N                                  | ЛНz                                                       | 18  |          |          |       |  |
|                                |                              | f = 300MHz to 600MHz                                |                                                           | 14  |          |          | dB    |  |
| Differential Input Return Loss | DI DV DIEE                   | f = 600MHz to 1200MHz                               |                                                           | 10  |          |          |       |  |
| (Notes 4, 5)                   | RLRX-DIFF                    | f = 1.2GHz to 2.4GHz                                |                                                           | 8   |          |          | ] UD  |  |
|                                |                              | f = 2.4GHz to 3.0GH                                 | Hz                                                        | 3   |          |          |       |  |
|                                |                              | f = 3.0GHz to 5.0GH                                 |                                                           | 1   | <u> </u> | <u> </u> | ]     |  |

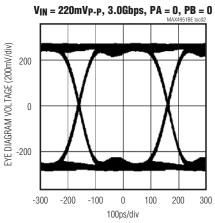
## **ELECTRICAL CHARACTERISTICS (continued)**

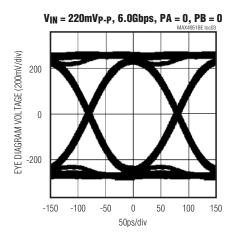
 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, C_L = 12 \text{nF}, R_L = 50\Omega, T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}, \text{ unless otherwise noted.}$  Typical values are at  $V_{CC} = +3.3 \text{V}, T_A = +25^{\circ}\text{C}.)$  (Note 3)

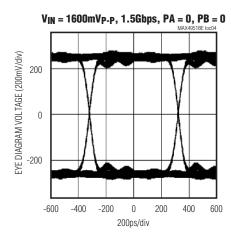
| PARAMETER                       | SYMBOL               | COND                                           | ITIONS        | MIN | TYP | MAX  | UNITS             |  |
|---------------------------------|----------------------|------------------------------------------------|---------------|-----|-----|------|-------------------|--|
|                                 |                      | f = 150MHz to 300MI                            | Hz            | 5   |     |      |                   |  |
| Common-Mode Input Return        |                      | f = 300MHz to 600MI                            | Hz            | 5   |     |      |                   |  |
|                                 | DI =v. ev.           | f = 600MHz to 1200MHz                          |               | 2   |     |      | dB                |  |
| Loss (Notes 4, 5)               | RL <sub>RX</sub> -CM | f = 1.2GHz  to  2.4GHz                         | Z             | 1   |     |      | иБ                |  |
|                                 |                      | f = 2.4GHz to 3.0GH                            | Z             | 1   |     |      |                   |  |
|                                 |                      | f = 3.0GHz to 5.0GH                            | Z             | 1   |     |      |                   |  |
|                                 |                      | f = 150MHz to 300MI                            | Hz            | 14  |     |      |                   |  |
|                                 |                      | f = 300MHz to 600MI                            | Hz            | 8   |     |      |                   |  |
| Differential Output Return Loss | DI                   | f = 600MHz to 1200N                            | ЛНz           | 6   |     |      | 4D                |  |
| (Notes 4, 5)                    | RLTX-DIFF            | f = 1.2GHz to 2.4GH                            | Z             | 6   |     |      | · dB              |  |
|                                 |                      | f = 2.4GHz to 3.0GH                            | Z             | 3   |     |      |                   |  |
|                                 |                      | f = 3.0GHz to 5.0GH                            | Z             | 1   |     |      |                   |  |
|                                 |                      | f = 150MHz to 300MI                            | Hz            | 8   |     |      |                   |  |
|                                 |                      | f = 300MHz to 600MI                            | Hz            | 5   |     |      |                   |  |
| Common-Mode Output Return       | DI                   | f = 600MHz to 1200MHz                          |               | 2   |     |      | -10               |  |
| Loss (Notes 4, 5)               | RLTX-CM              | f = 1.2GHz to 2.4GHz                           |               | 1   |     |      | dB                |  |
|                                 |                      | f = 2.4GHz to 3.0GHz                           |               | 1   |     |      |                   |  |
|                                 |                      | f = 3.0GHz to 5.0GHz                           |               | 1   |     |      |                   |  |
|                                 |                      | f = 150MHz to 300MHz                           |               | 30  |     |      |                   |  |
|                                 |                      | f = 300MHz to 600MHz                           |               | 20  |     |      |                   |  |
| Common-Mode to Differential     | RL <sub>RX-CM-</sub> | f = 600MHz to 1200MHz                          |               | 10  |     |      | 15                |  |
| Input Return Loss (Notes 4, 5)  | DM                   | f = 1.2GHz to 2.4GHz                           |               | 10  |     |      | dB                |  |
|                                 |                      | f = 2.4GHz to 3.0GHz                           |               | 4   |     |      |                   |  |
|                                 |                      | f = 3.0GHz to 5.0GHz                           |               | 4   |     |      |                   |  |
|                                 |                      | f = 150MHz to 300MI                            | Hz            | 30  |     |      |                   |  |
|                                 |                      | f = 300MHz to 600MI                            | Hz            | 30  |     |      |                   |  |
| Common-Mode to Differential     | RLTX-CM-             | f = 600MHz to 1200MHz                          |               | 20  |     |      | -10               |  |
| Output Return Loss (Notes 4, 5) | DM                   | f = 1.2GHz to 2.4GH                            | Z             | 10  |     |      | dB                |  |
|                                 |                      | f = 2.4GHz to 3.0GH                            | Z             | 4   |     |      |                   |  |
|                                 |                      | f = 3.0GHz to 5.0GH                            | Z             | 4   |     |      |                   |  |
| Differential Input Signal Range | VRX-DFF-PP           | SATA I, SATA II (Note                          | e 4)          | 225 |     | 1600 | mV <sub>P-P</sub> |  |
| Differential Output Swing       | VTX-DFF-PP           | f = 750MHz (Note 4)                            | PA = PB = GND | 425 | 525 | 625  | mV <sub>P-P</sub> |  |
| Output Preemphasis              | TX-DFF-PP-<br>PEDB   | f = 750MHz                                     | PA = PB = VCC |     | 2.8 |      | dB                |  |
| Input Equalization              |                      | VRX-DFF-PP = 300mVp-p,<br>tin,Rise/FALL = 20ps |               |     | 2.7 |      | dB                |  |
| Preemphasis Time Period         | tpE                  | f = 750MHz                                     | PA = PB = VCC |     | 150 | ,    | ps                |  |
| Propagation Delay               | tpD                  |                                                | •             |     | 150 |      | ps                |  |

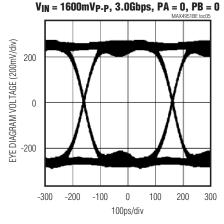
### **ELECTRICAL CHARACTERISTICS (continued)**

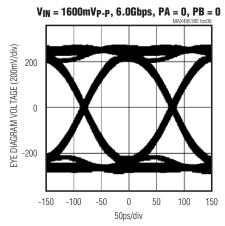

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, C_L = 12 \text{nF}, R_L = 50\Omega, T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}, \text{ unless otherwise noted.}$  Typical values are at  $V_{CC} = +3.3 \text{V}, T_A = +25^{\circ}\text{C}.)$  (Note 3)


| PARAMETER                         | SYMBOL                          | CONDITIONS                                                        | MIN  | TYP | MAX | UNITS             |
|-----------------------------------|---------------------------------|-------------------------------------------------------------------|------|-----|-----|-------------------|
| Output Rise/Fall Time             | to to                           | PA = PB = GND<br>SATA I/II (Note 7)                               | 67   |     | 130 |                   |
| (Notes 5, 6)                      | t <sub>R</sub> , t <sub>F</sub> | PA = PB = GND<br>SATA III (Note 8)                                | 40   |     | 68  | ps                |
| Deterministic Jitter (Notes 5, 9) | tTX-DJ-DD                       | PA = PB = GND                                                     |      |     | 20  | psp-p             |
| Random Jitter (Notes 5, 9)        | tTX-RJ-DD                       | PA = PB = GND                                                     |      |     | 1.5 | psRMS             |
| OOB Detector Threshold            |                                 | SATA OOB pattern, f = 750MHz                                      | 50   |     | 150 | mV <sub>P-P</sub> |
| OOB Output Startup/Shutdown Time  |                                 | (Note 10)                                                         |      | 4   | 8   | ns                |
| OOB Differential-Offset Delta     | △Voob,dff                       | Difference between OOB and active-mode output offset              | -120 |     | 120 | mV                |
| OOB Common-Mode Delta             | △Voob,cm                        | Difference between OOB and active common-mode voltage             | -15  |     | +15 | mV                |
| OOB Output Disable                | Voob,out                        | V <sub>IN</sub> < 50mV <sub>P-P</sub> , output voltage in squelch |      |     | 30  | mV <sub>P-P</sub> |
| LOGIC INPUT                       |                                 |                                                                   |      |     |     |                   |
| Input Logic-High                  | VIH                             |                                                                   | 1.4  |     |     | V                 |
| Input Logic-Low                   | VIL                             |                                                                   |      |     | 0.6 | V                 |
| Input Logic Hysteresis            | VHYST                           |                                                                   |      | 0.1 |     | V                 |
| Input Pullup Resistance           | Rpu                             | Pin: CAD                                                          | 200  | 330 |     | kΩ                |
| Input Pulldown Resistance         | R <sub>PD</sub>                 | Pins: EN, PA, PB                                                  | 200  | 330 |     | kΩ                |
| ESD PROTECTION                    |                                 |                                                                   |      |     |     |                   |
| All Pins                          |                                 | НВМ                                                               |      | ±8  |     | kV                |

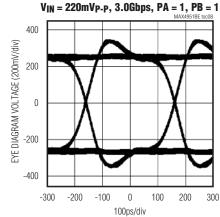

- **Note 3:** All devices are 100% production tested at  $T_A = +70$ °C. All temperature limits are guaranteed by design.
- Note 4: This specification meets SATA v.2.6, gold standard.
- Note 5: Guaranteed by design.
- **Note 6:** Rise and fall times are measured using 20% and 80% levels.
- Note 7: For SATA 2.0, refer to SATA 2.6-Gold Specification, page 111, Figure 191.
- Note 8: For SATA 3.0, refer to SATA Revision 3.0 Release Candidate, page 222, Figure 124.
- **Note 9:** DJ measured using a K28.5 pattern; RJ measured using a D10.2 pattern.
- Note 10: Total time for OOB detection circuit to enable/squelch the output.

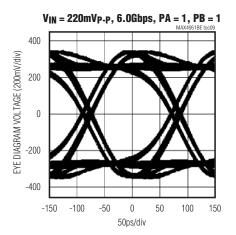

## **Typical Operating Characteristics**


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ 



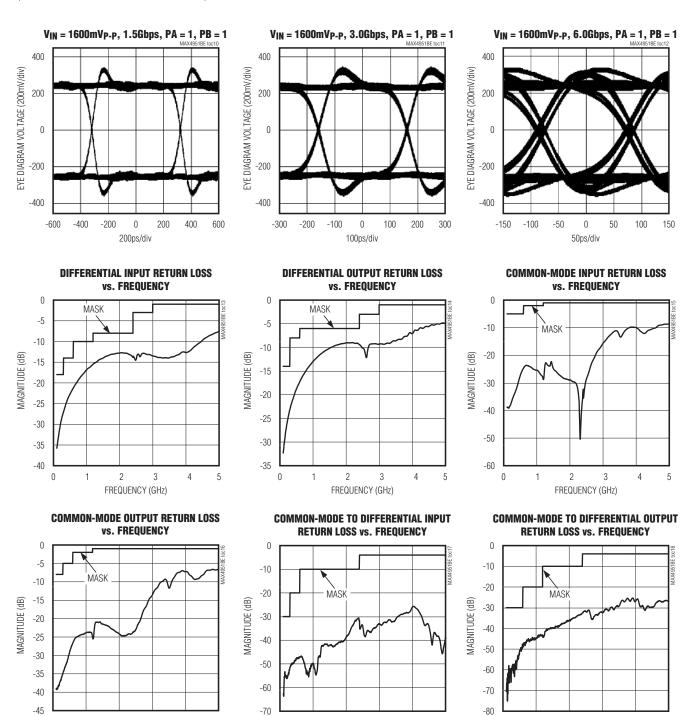











Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ 



2

FREQUENCY (GHz)

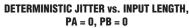
0

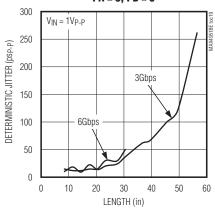
2

FREQUENCY (GHz)

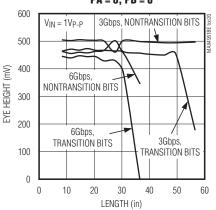
0

3

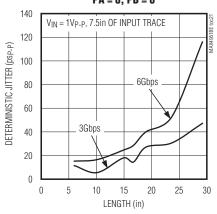

2


FREQUENCY (GHz)

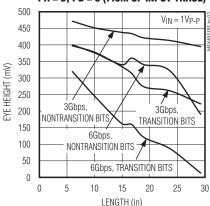
3


## Typical Operating Characteristics (continued)

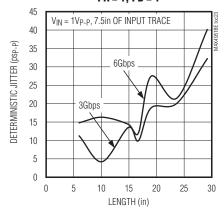
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ 



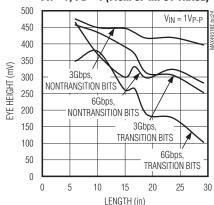




#### EYE HEIGHT vs. INPUT LENGTH, PA = 0, PB = 0

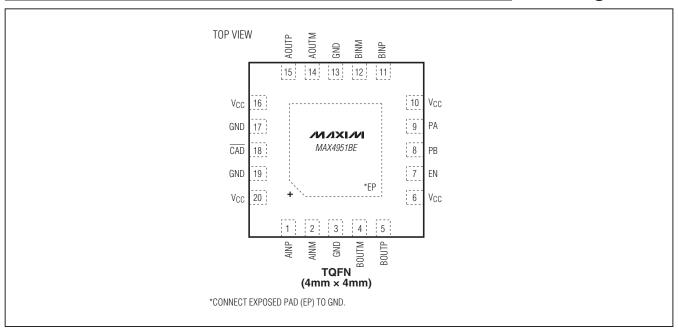



DETERMINISTIC JITTER vs. OUTPUT LENGTH, PA = 0, PB = 0




EYE HEIGHT vs. OUTPUT LENGTH, PA = 0, PB = 0 (7.5in OF INPUT TRACE)

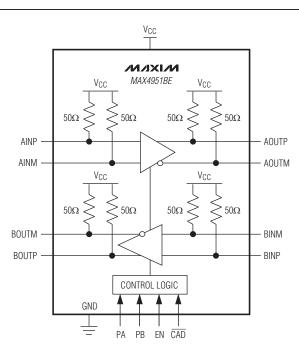



DETERMINISTIC JITTER vs. OUTPUT LENGTH, PA = 1, PB = 1



EYE HEIGHT vs. OUTPUT LENGTH, PA = 1, PB = 1 (7.5in OF INPUT TRACE)




## **Pin Configuration**



## **Pin Description**

| PIN           | NAME  | FUNCTION                                                                                                                                                                                                                                          |
|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | AINP  | Noninverting Input from Host Channel A                                                                                                                                                                                                            |
| 2             | AINM  | Inverting Input from Host Channel A                                                                                                                                                                                                               |
| 3, 13, 17, 19 | GND   | Ground                                                                                                                                                                                                                                            |
| 4             | BOUTM | Inverting Output to Host Channel B                                                                                                                                                                                                                |
| 5             | BOUTP | Noninverting Output to Host Channel B                                                                                                                                                                                                             |
| 6, 10, 16, 20 | Vcc   | Positive Supply Voltage Input. Bypass V <sub>CC</sub> to GND with 1µF and 0.01µF capacitors in parallel as close to the device as possible.                                                                                                       |
| 7             | EN    | Active-High Enable Input. Drive EN low to put the device in standby mode. Drive EN high for normal operation. EN is internally pulled down with a $330k\Omega$ (typ) resistor.                                                                    |
| 8             | PB    | Channel B Preemphasis Enable Input. Drive PB high to enable channel B output preemphasis. Drive PB low for standard SATA output level. PB is internally pulled down with a $330k\Omega$ (typ) resistor.                                           |
| 9             | PA    | Channel A Preemphasis Enable Input. Drive PA high to enable channel A output preemphasis. Drive PA low for standard SATA output level. PA is internally pulled down with a $330k\Omega$ (typ) resistor.                                           |
| 11            | BINP  | Noninverting Input from Device Channel B                                                                                                                                                                                                          |
| 12            | BINM  | Inverting Input from Device Channel B                                                                                                                                                                                                             |
| 14            | AOUTM | Inverting Output to Device Channel A                                                                                                                                                                                                              |
| 15            | AOUTP | Noninverting Output to Device Channel A                                                                                                                                                                                                           |
| 18            | CAD   | Active-Low Cable-Detect Input. Drive $\overline{\text{CAD}}$ high to put the device in standby mode. Drive $\overline{\text{CAD}}$ low for normal operation. $\overline{\text{CAD}}$ is internally pulled up with a 330k $\Omega$ (typ) resistor. |
| _             | EP    | Exposed Pad. Internally connected to GND. EP must be electrically connected to a ground plane for proper thermal and electrical operation.                                                                                                        |

## Functional Diagram/Truth Table



| EN | CAD | STATUS            |
|----|-----|-------------------|
| 0  | 0   | Low-Power Standby |
| 0  | 1   | Low-Power Standby |
| 1  | 0   | Active            |
| 1  | 1   | Low-Power Standby |

| EN | PA | РВ | CHANNEL A     | CHANNEL B     |
|----|----|----|---------------|---------------|
| 0  | Х  | Х  | Standby       | Standby       |
| 1  | 0  | 0  | Standard SATA | Standard SATA |
| 1  | 1  | 0  | Preemphasis   | Standard SATA |
| 1  | 0  | 1  | Standard SATA | Preemphasis   |
| 1  | 1  | 1  | Preemphasis   | Preemphasis   |

**Note:** PA, PB, EN are internally pulled down to GND by  $330k\Omega$  resistors.  $\overline{CAD}$  is internally pulled up to  $V_{CC}$  by a  $330k\Omega$  resistor.

X = Don't care.

### **Detailed Description**

The MAX4951BE consists of two identical buffers that take SATA input signals and return them to full output levels while withstanding high ESD ±8kV (HBM) protection. This device meets SATA I/II specifications and can meet SATA III specifications.

#### **Input/Output Terminations**

Inputs and outputs are internally 50 $\Omega$  terminated to VCC (see the *Functional Diagram/Truth Table*) and must be AC-coupled to the SATA controller IC and SATA device for proper operation.

### **OOB Signal Detection**

The MAX4951BE provides full OOB signal support through high-speed, OOB-detection circuitry. SATA OOB differential input signals of 50mVp-p or less are detected as OFF and are not passed to the output. This prevents the system from responding to unwanted noise. SATA OOB differential input signals of 150mVp-p or more are detected as on and passed to the output. This allows OOB signals to transmit through the MAX4951BE. The time for the OOB-detection circuit to detect an inactive SATA OOB input and squelch the associated output, or to detect an active SATA OOB input and enable the output, is less than 4ns (typ).

#### **Enable Input**

The MAX4951BE features an active-high enable input (EN). EN has an internal pulldown resistor of  $330k\Omega$  (typ). When EN is driven low or left unconnected, the MAX4951BE enters low-power standby mode and the buffers are disabled, reducing the supply current to  $500\mu A$  (typ). Drive EN high for normal operation.

### **Cable-Detect Input**

The MAX4951BE features an active-low, cable-detect input ( $\overline{CAD}$ ).  $\overline{CAD}$  has an internal pullup resistor of 330k $\Omega$  (typ). When  $\overline{CAD}$  is driven high or left unconnected, the MAX4951BE enters low-power standby mode and the buffers are disabled, reducing supply current to 500 $\mu$ A (typ). This signal is normally driven low by inserting an eSATA cable into a properly wired socket (see Figure 3). If the cable-detect feature is not desired, simply ground this pin.

#### **Dynamic Power-Down Mode**

The MAX4951BE features a dynamic power-down mode where the device shuts down the major power consump-

1MO  $1500\Omega$  $\mathcal{N}$ CHARGE-CURRENT DISCHARGE LIMIT RESISTOR RESISTANCE HIGH-DEVICE STORAGE VOLTAGE UNDER 100pF CAPACITOR TEST SOURCE

Figure 1. Human Body ESD Test Model

tion circuitry. The MAX4951BE detects whether the input signal does not exist for a 4µs (typ) duration. Normal power and normal operation resume when a signal above the OOB-threshold level is detected at the input. This function is implemented separately for both channels.

### **Output Preemphasis Selection Inputs**

The MAX4951BE has two preemphasis-control logic inputs, PA and PB. PA and PB have internal pulldown resistors of 330k $\Omega$  (typ). PA and PB enable preemphasis to the outputs of their corresponding buffers (see the Functional Diagram/Truth Table). Drive PA or PB low or leave unconnected for standard SATA output levels. Drive PA or PB high to provide preemphasis to the output. The preemphasis output signal compensates for attenuation from longer trace lengths or to meet eSATA specifications.

#### **ESD Protection**

As with all Maxim devices, ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The MAX4951BE is protected against ESD ±8kV (HBM). The ESD structures withstand ±8kV in normal operation and powered down states. After an ESD event, the MAX4951BE continues to function without latchup.

#### НВМ

The MAX4951BE is characterized for  $\pm 8kV$  ESD protection using the HBM (MIL-STD-883, Method 3015). Figure 1 shows the HBM and Figure 2 shows the current waveform it generates when discharged into a low-impedance state. This model consists of a 100pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a  $1.5k\Omega$  resistor.

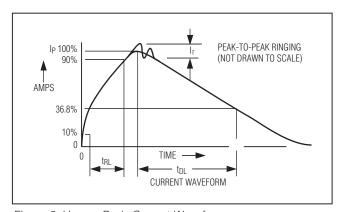



Figure 2. Human Body Current Waveform

### Applications Information

Figure 3 shows a typical application with the MAX4951BE used to drive an eSATA output. The diagram assumes that the MAX4951BE is close to the SATA host controller. PB is set low to drive standard SATA levels to the host, and PA is set high to drive eSATA levels to the device. If the MAX4951BE is further from the controller, set PB high to compensate for attenuation. The MAX4951BE is backward-pin-compatible with MAX4951 (see Figure 4).

### **Exposed-Pad Package**

The exposed-pad, 20-pin TQFN package incorporates features that provide a very low thermal resistance path for heat removal from the IC. The exposed pad on the MAX4951BE must be soldered to GND for proper thermal and electrical performance. For more information on

exposed-pad packages, refer to Application Note 862: *HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages*.

#### Lavout

Use controlled-impedance transmission lines to interface with the MAX4951BE high-speed inputs and outputs. Place power-supply decoupling capacitors as close as possible to VCC pin.

### **Power-Supply Sequencing**

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the device.

Proper power-supply sequencing is recommended for all devices. Always apply VCC before applying signals, especially if the signal is not current limited.

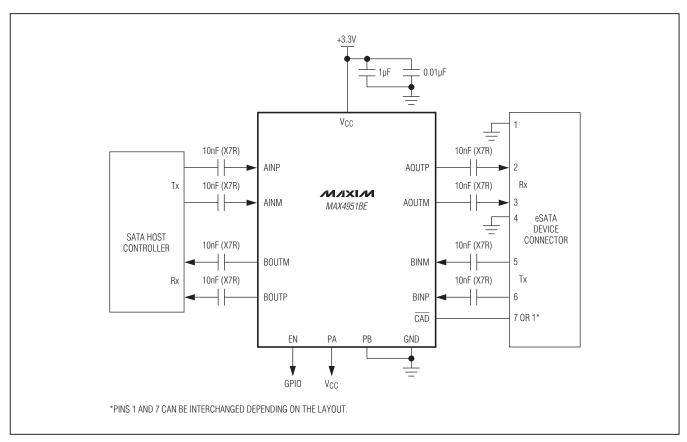



Figure 3. Typical Application Circuit for MAX4951BE Driving an eSATA Output

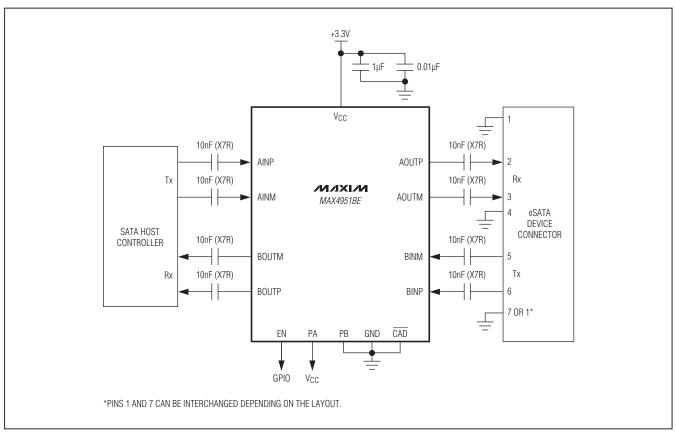



Figure 4. Typical Application Circuit for Backward Pin Compatibility with the MAX4951

**Chip Information** 

PROCESS: BICMOS

## \_Package Information

For the latest package outline information and land patterns, go to <a href="www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE    | PACKAGE | OUTLINE        | LAND        |
|------------|---------|----------------|-------------|
| TYPE       | CODE    | NO.            | PATTERN NO. |
| 20 TQFN-EP | T2044+2 | <u>21-0139</u> |             |

## **Revision History**

| REVISION<br>NUMBER | REVISION DATE | DESCRIPTION                                                                                                                                                 | PAGES<br>CHANGED |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0                  | 10/09         | Initial release                                                                                                                                             | _                |
| 1                  | 11/10         | Deleted the "Meets SATA I, II Input/Output-Return Loss Mask" feature from the Features section, deleted the "Top Mark" column from the Ordering Information | 1                |

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.