SCES037C - JULY 1995 - REVISED FEBRUARY 1999

 Member of the Texas Instruments	DGG OR DL PACKA		
Widebus™ Family	(TOP VIEW)		
 EPIC ™ (Enhanced-Performance Implanted	1 <u>OE</u> [1	56] 1CLK	
CMOS) Submicron Process	1Q1 2	55] 1D1	
 ESD Protection Exceeds 2000 V Per	1Q2 [3	54] 1D2	
MIL-STD-883, Method 3015; Exceeds 200 V	GND [4	53] GND	
Using Machine Model (C = 200 pF, R = 0)	1Q3 [5	52] 1D3	
 Latch-Up Performance Exceeds 250 mA Per JESD 17 	1Q3 []5 1Q4 []6 V _{CC} []7	52 1 1D3 51 1 1D4 50 1 V _{CC}	
 Bus Hold on Data Inputs Eliminates the	1Q5 [] 8	49] 1D5	
Need for External Pullup/Pulldown	1Q6 [] 9	48] 1D6	
Resistors	1Q7 [] 10	47] 1D7	
 Package Options Include Plastic 300-mil	GND 11	46 GND	
Shrink Small-Outline (DL) and Thin Shrink	1Q8 12	45 1D8	
Small-Outline (DGG) Packages	1Q9 13	44 1D9	
description	1Q10 14 2Q1 15 2Q2 16	43] 1D10 42] 2D1 41] 2D2	
This 20-bit bus-interface flip-flop is designed for 1.65-V to 3.6-V V _{CC} operation.	2Q2 [] 16 2Q3 [] 17 GND [] 18	41 2D2 40 2D3 39 GND	
The SN74ALVCH16821 can be used as two 10-bit	2Q4 [] 19	38 2D4	
flip-flops or one 20-bit flip-flop. The 20 flip-flops	2Q5 [] 20	37 2D5	
are edge-triggered D-type flip-flops. On the	2Q6 [] 21	36 2D6	
positive transition of the clock (CLK) input, the device provides true data at the Q outputs.	V _{CC} [22 2Q7 [23	35 V _{CC} 34 2D7	
A buffered output-enable (OE) input can be used	2Q8 [24	33 2D8	
to place the ten outputs in either a normal logic	GND [25	32 GND	
state (high or low logic levels) or the	2Q9 [26	31 2D9	
high-impedance state. In the high-impedance	2Q10 [27	30 2D10	

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

2OE

29 20LK

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16821 is characterized for operation from -40°C to 85°C.

components.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

high-impedance state. In the high-impedance

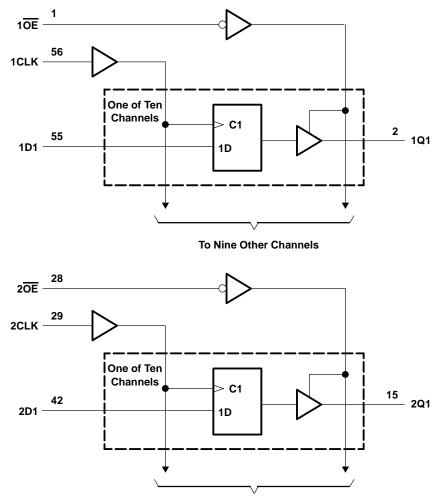
state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74ALVCH16821 3.3-V 20-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS SCES037C – JULY 1995 – REVISED FEBRUARY 1999

FUNCTION TABLE (each 10-bit flip-flop)

	INPUTS	OUTPUT						
OE	CLK	D	Q					
L	\uparrow	Н	Н					
L	\uparrow	L	L					
L	H or L	Х	Q ₀					
Н	х	Х	Z					


logic symbol[†]

1 <mark>0E</mark>	1	EN2			
1CLK	56	► C1			
2 <mark>0E</mark>	28	EN4			
2CLK	29	> C3			
202.0			_		
1D1	55	1D	2⊽	2	1Q1
1D2	54		2 v	3	1Q2
1D2	52			5	1Q2
1D3	51			6	1Q3
1D4 1D5	49			8	1Q4 1Q5
1D5 1D6	48			9	
	47]		10	1Q6
1D7	45]		12	1Q7
1D8	44]		13	1Q8
1D9	43			14	1Q9
1D10	42	1		15	1Q10
2D1	41	3D	4⊽	16	2Q1
2D2	40	1		17	2Q2
2D3	38	1		19	2Q3
2D4	37	1		20	2Q4
2D5	36	1		21	2Q5
2D6	34	 		23	2Q6
2D7	33	 		24	2Q7
2D8	31	ļ		26	2Q8
2D9	30	 		27	2Q9
2D10					2Q10

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Nine Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Output voltage range, V_O (see Notes 1 and 2) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$) Continuous output current, I_O Continuous current through each V_{CC} or GND Declared thermal impedance 0 (see Note 2): DCC package	-0.5 V to 4.6 V -0.5 V to V _{CC} + 0.5 V -50 mA -50 mA ±50 mA ±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG packageDL package	81°C/W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

SN74ALVCH16821 3.3-V 20-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS SCES037C – JULY 1995 – REVISED FEBRUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
VCC	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
VIL	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8		
VI	Input voltage		0	VCC	V	
Vo	Output voltage		0	VCC	V	
		V _{CC} = 1.65 V		-4		
1	Ligh lovel output outport	V _{CC} = 2.3 V		-12	mA	
ЮН	High-level output current	$V_{CC} = 2.7 V$		-12		
		$V_{CC} = 3 V$		-24		
		V _{CC} = 1.65 V		4		
1		V _{CC} = 2.3 V		12		
IOL	Low-level output current	V _{CC} = 2.7 V		12	- mA	
	V _{CC} = 3 V			24		
$\Delta t / \Delta v$	Input transition rise or fall rate	•		10	ns/V	
Τ _Α	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES037C - JULY 1995 - REVISED FEBRUARY 1999

PA	RAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT	
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} -0.	2			
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2				
^V OH	$I_{OH} = -6 \text{ mA}$	2.3 V	2					
		2.3 V	1.7			V		
	$I_{OH} = -12 \text{ mA}$	2.7 V	2.2					
		3 V	2.4					
	$I_{OH} = -24 \text{ mA}$	3 V	2					
		I _{OL} = 100 μA	1.65 V to 3.6 V			0.2		
		I _{OL} = 4 mA	1.65 V			0.45		
Ve		I _{OL} = 6 mA	2.3 V			0.4	V	
VOL		1	2.3 V			0.7	V	
		I _{OL} = 12 mA	2.7 V			0.4		
		I _{OL} = 24 mA	3 V			0.55		
lj		V _I = V _{CC} or GND	3.6 V			±5	μΑ	
		V _I = 0.58 V	1.65 V	25				
		V _I = 1.07 V	1.65 V	-25				
		V _I = 0.7 V	2.3 V	45				
ll(hold)		V _I = 1.7 V	2.3 V	-45			μA	
		V _I = 0.8 V	3 V	75				
		V _I = 2 V	3 V	-75				
		V _I = 0 to 3.6 V [‡]	3.6 V			±500		
I _{OZ}		$V_{O} = V_{CC}$ or GND	3.6 V			±10	μΑ	
ICC		$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	3.6 V			40	μΑ	
∆lcc		One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V			750	μΑ	
	Control inputs		2.0.1		3.5		~ F	
Ci	Data inputs	VI = V _{CC} or GND	3.3 V		6		pF	
Co	Outputs	V _O = V _{CC} or GND	3.3 V		7		pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

		V _{CC} = 1.8 V		V _{CC} = 1.8 V V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		§		150		150		150	MHz
tw	Pulse duration, CLK high or low	§		3.3		3.3		3.3		ns
t _{su}	Setup time, data before CLK [↑]	§		4.4		3.9		3.4		ns
th	Hold time, data after $CLK\uparrow$	§		0		0		0		ns

§ This information was not available at the time of publication.

SCES037C – JULY 1995 – REVISED FEBRUARY 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	1.8 V	= V _{CC} ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	= V _{CC} ± 0.3	3.3 V 3 V	UNIT
			MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		150		150		150		MHz
^t pd	CLK	Q		†	1	5.8		5.3	1	4.5	ns
t _{en}	OE	Q		†	1	6.6		6.2	1	5.1	ns
^t dis	OE	Q		†	1	5.7		5	1	4.6	ns

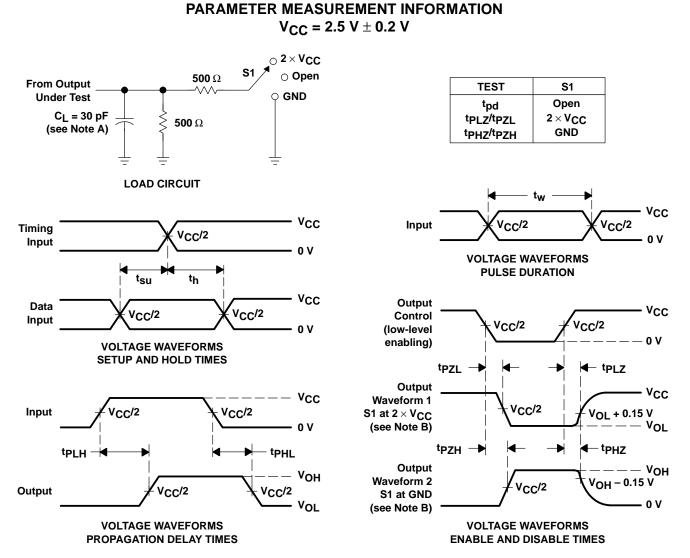
[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		METER TEST CONDITIONS			V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
		TEST CONDITIONS	TYP	TYP	TYP	UNIT	
<u> </u>	Power dissipation	Outputs enabled	$C_{1} = 50 \text{ pc}$ f = 10 MHz	†	36	40	рF
Cpd	capacitance	Outputs disabled	$C_{L} = 50 \text{ pF}, \text{ f} = 10 \text{ MHz}$	†	22	24	рг

[†] This information was not available at the time of publication.

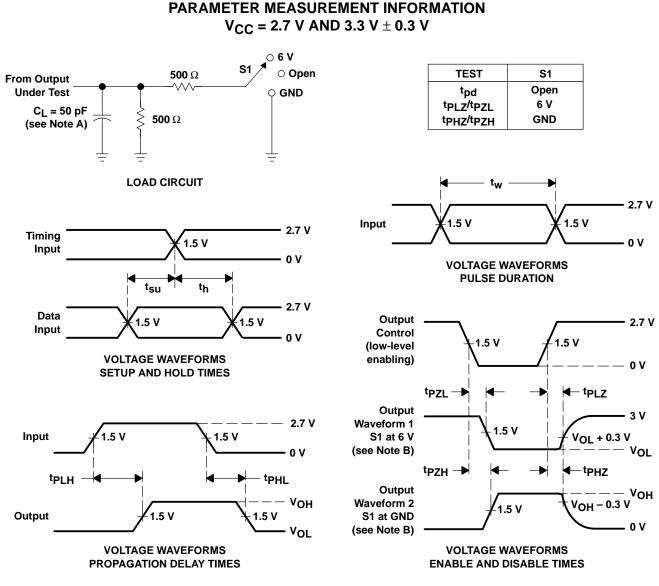
SN74ALVCH16821 3.3-V 20-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS SCES037C – JULY 1995 – REVISED FEBRUARY 1999


PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 V$ $\odot 2 \times V_{CC}$ **S1** O Open **1 k**Ω From Output TEST **S1** GND **Under Test** 0 Open ^tpd $C_L = 30 \text{ pF}$ tPLZ/tPZL $2 \times V_{CC}$ **1 k**Ω (see Note A) GND tPHZ/tPZH LOAD CIRCUIT tw Vcc Vcc Input V_{CC}/2 V_{CC}/2 Timing V_{CC}/2 0 V Input 0 V **VOLTAGE WAVEFORMS** PULSE DURATION t_{su} th Vcc Output Data Vcc V_{CC}/2 V_{CC}/2 Control Input V_{CC}/2 V_{CC}/2 (low-level 0 V 0 V enabling) **VOLTAGE WAVEFORMS** SETUP AND HOLD TIMES - ^tPLZ ^tPZL Output - Vcc Vcc Waveform 1 CC/2 VCC/2 S1 at $2 \times V_{CC}$ Input V_{CC}/2 V_{OL} + 0.15 V (see Note B) 0 V VOL ^tPZH ^tPHZ ^tPLH ^tPHL Output VOH ۷он Waveform 2 V_{OH} – 0.15 V V_{CC}/2 Output V_{CC}/2 V_{CC}/2 S1 at GND 0 V VOL (see Note B) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES ENABLE AND DISABLE TIMES**

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - D. The outputs are measured one at a time with on
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tPLH and tPHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

SCES037C - JULY 1995 - REVISED FEBRUARY 1999



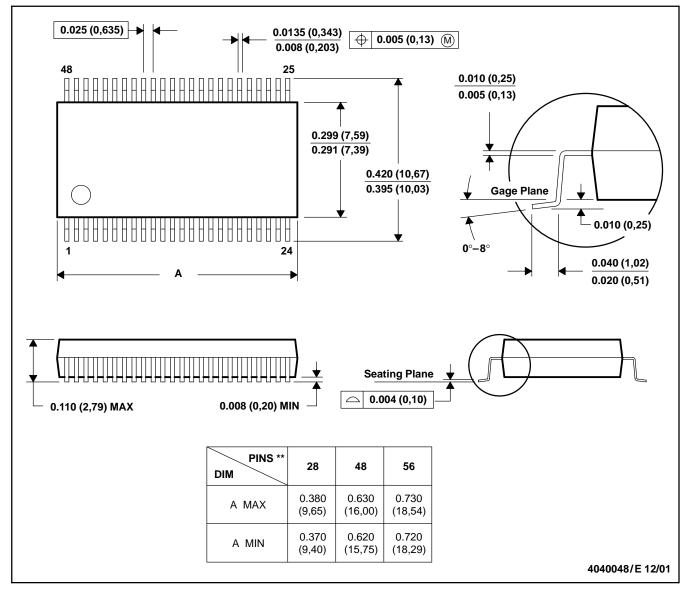
- NOTES: A. C₁ includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SCES037C - JULY 1995 - REVISED FEBRUARY 1999

- NOTES: A. C_I includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns. C.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PI7} and t_{PH7} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 3. Load Circuit and Voltage Waveforms



MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

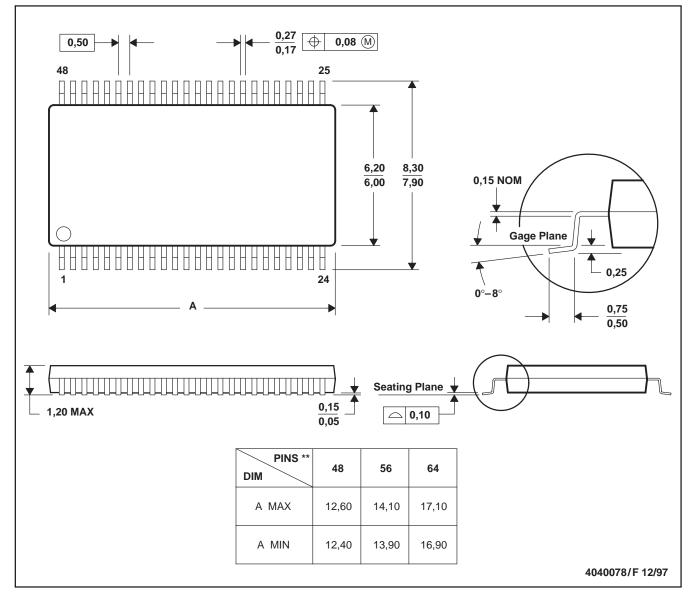
DL (R-PDSO-G**) 48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated