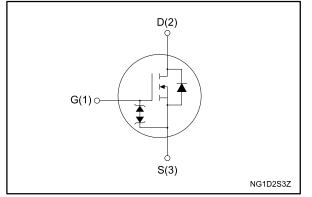

life.augmented


STF28N60DM2

N-channel 600 V, 0.13 Ω typ., 21 A MDmesh[™] DM2 Power MOSFET in a TO-220FP package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax.}	R _{DS(on)} max.	ID	Ртот
STF28N60DM2	650 V	0.16 Ω	21 A	30 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance •
- 100% avalanche tested •
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh™ DM2 fast recovery diode series. It offers very low recovery charge (Qrr) and time (trr) combined with low RDS(on), rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STF28N60DM2	28N60DM2	TO-220FP	Tube

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±25	V
1-	Drain current (continuous) at T _{case} = 25 °C	21	٨
lo	Drain current (continuous) at T _{case} = 100 °C	14	A
IDM ⁽¹⁾	Drain current (pulsed)	84	А
P _{TOT}	Total dissipation at T _{case} = 25 °C	30	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
Viso ⁽⁴⁾	Insulation withstand voltage (RMS) from all three leads to external heat sink	2.5	kV
T _{stg}	Storage temperature	55 to 150 %	
Tj	Operating junction temperature	-55 to 150	°C

Notes:

 $^{\left(1\right) }$ Pulse width is limited by safe operating area.

 $^{(2)}$ Isp \leq 21 A, di/dt=900 A/µs; Vps peak < V(BR)pss,Vpp = 400 V

 $^{(3)}$ V_{DS} \leq 480 V.

 $^{(4)}t = 1 \text{ s; } T_C = 25 \text{ °C}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	4.2	°C/W
Rthj-amb	Thermal resistance junction-ambient	62.5	-0/00

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar ⁽¹⁾	Avalanche current, repetitive or not repetitive	4	А
E _{AS} ⁽²⁾	Single pulse avalanche energy	350	mJ

Notes:

⁽¹⁾ pulse width limited by T_{jmax}

 $^{(2)}$ starting T_{j} = 25 °C, I_{D} = $I_{AR},\,V_{DD}$ = 50 V.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	600			V	
7		$V_{GS} = 0 V, V_{DS} = 600 V$			1		
Idss	IDSS Zero gate voltage drain current	$ V_{GS} = 0 \ V, \ V_{DS} = 600 \ V, \\ T_{case} = 125 \ ^{\circ}C $			100	μA	
lgss	Gate-body leakage current	$V_{\text{DS}}=0~V,~V_{\text{GS}}=\pm25~V$			±10	μA	
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V	
$R_{\text{DS(on)}}$	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10.5 \text{ A}$		0.13	0.16	Ω	

Table 6: Dynamic						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1500	-	
Coss	Output capacitance	$V_{DS} = 100 V, f = 1 MHz,$	-	70	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	1.6	-	P
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{\text{DS}}=0 \text{ to } 480 \text{ V}, V_{\text{GS}}=0 \text{ V}$	-	134	-	pF
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	4.6	-	Ω
Qg	Total gate charge	$V_{DD} = 480 V, I_D = 21 A,$	-	34	-	
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	8	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	18.5	-	

Notes:

 $^{(1)}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDs increases from 0 to 80% VDSs.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 10.5 A	-	16	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	-	7.3	-	
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	53	-	ns
tr	Fall time	and Figure 19: "Switching time waveform")	-	9.3	-	

Table 7: Switching times

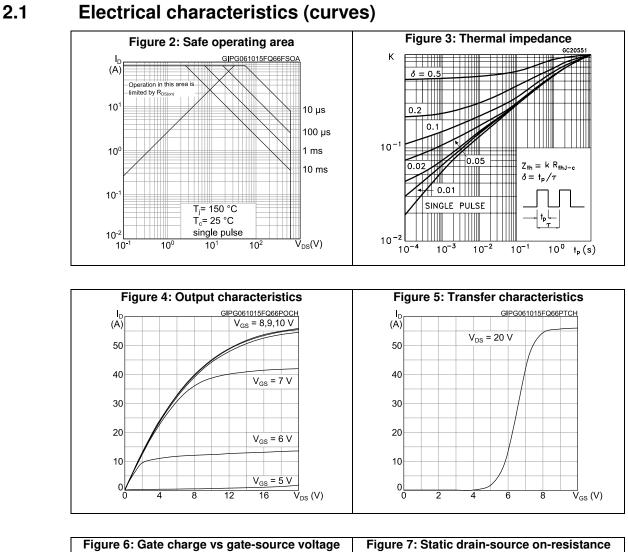
Electrical characteristics

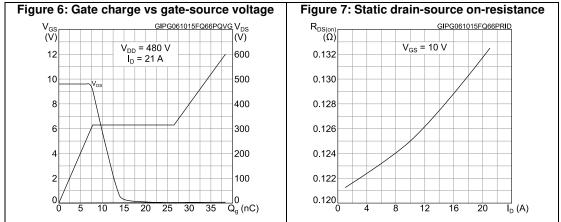
	Table 8: Source-drain diode						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
I _{SD} ⁽¹⁾	Source-drain current		-		21	А	
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		84	А	
Vsd ⁽³⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = 21 A$	-		1.6	V	
trr	Reverse recovery time	I _{SD} = 21 A, di/dt = 100 A/μs,	-	140		ns	
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	0.5		μC	
Irrm	Reverse recovery current	switching and diode recovery times")	-	7.4		А	
trr	Reverse recovery time	I _{SD} = 21 A, di/dt = 100 A/μs,	-	309		ns	
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see <i>Figure 16: "Test circuit for</i>	-	2.6		μC	
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	16.8		А	

Notes:

⁽¹⁾ Limited by maximum junction temperature.

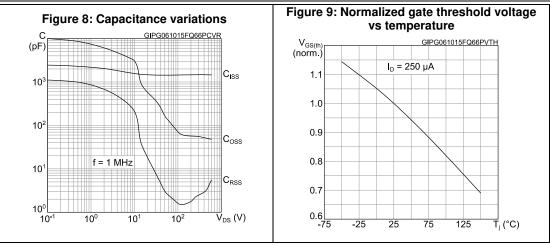
 $^{\left(2\right) }$ Pulse width is limited by safe operating area.

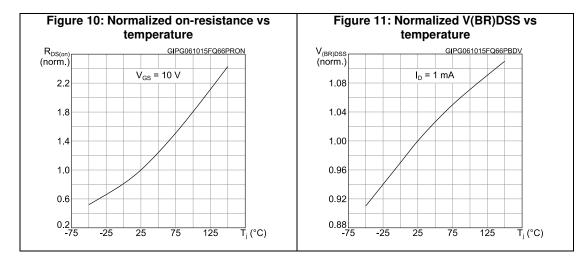

 $^{(3)}$ Pulse test: pulse duration = 300 µs, duty cycle 1.5%.

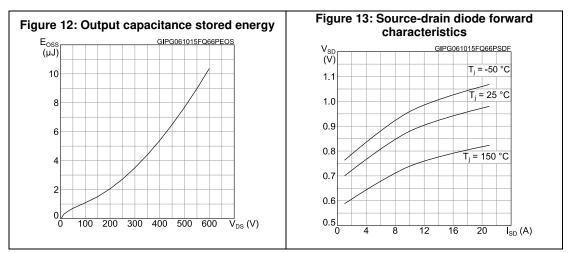

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V(BR)GSO	Gate-source breakdown voltage	$I_{GS} = \pm 250 \ \mu A, I_D = 0 \ A$	±30	-	-	V

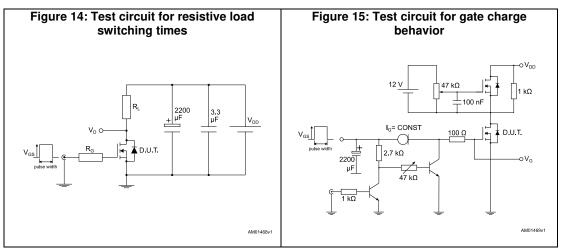
The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

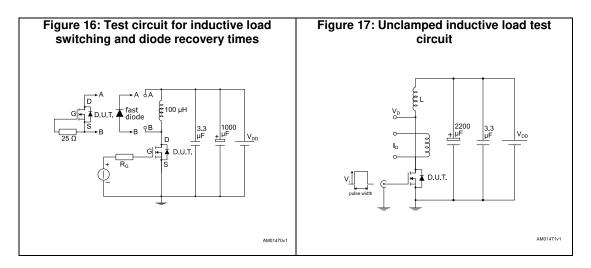


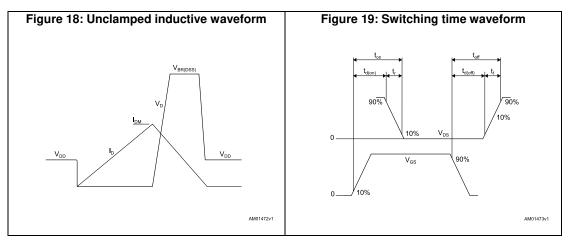




Electrical characteristics

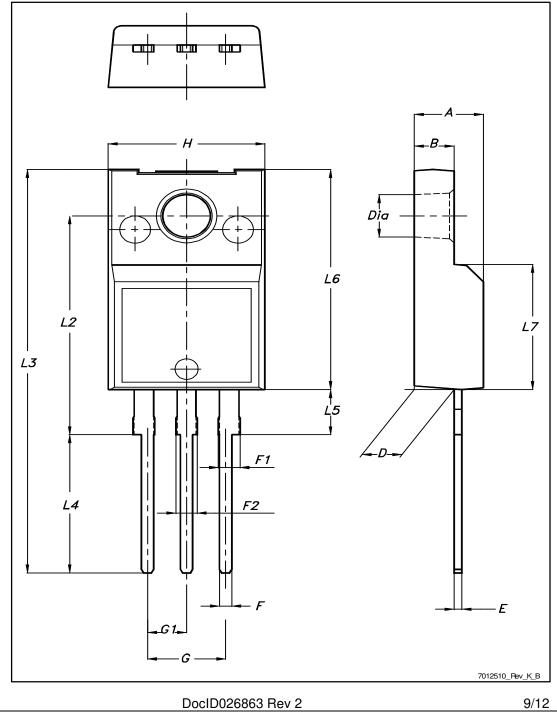






57

3 Test circuits


57

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-220FP package information

Figure 20: TO-220FP package outline

Package information

Table 10: TO-220FP package mechanical data

STF28N60DM2

Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

5 Revision history

Table 11: Document revision history

Revision	Changes
1	First release.
2	Text and formatting changes throughout document On cover page: - upated title and Features table In section Electrical ratings: - updated all table data In section Electrical characteristics: - updated all table data - renamed table Static (was On /off states) - added table Gate-source Zener diode Added section Electrical characteristics (curves) Updated and renamed section Package mechanical data (was Package information) Datasheet promoted from preliminary to production data
	1

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

