
180° ANALOG PHASE SHIFTER, 2 - 20 GHz

Typical Applications

The HMC935LP5E is ideal for:

- EW Receivers
- · Military Radar
- Test Equipment
- Satellite Communications
- Beam Forming Modules

Functional Diagram

Features

Wide Bandwidth: 2 - 20 GHz

180° Phase Shift

Low Insertion Loss: 4 dB

Low Phase Error: +20/-8 deg Typ.

Single Positive Voltage Control

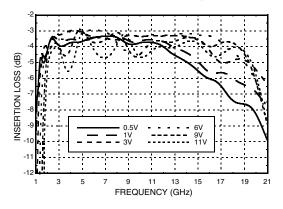
32 Lead 5 x 5 mm QFN Package: 25 mm²

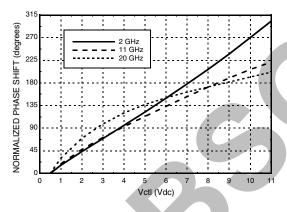
General Description

The HMC935LP5E is an Analog Phase Shifter which is controlled via an analog control voltage from 0.5 to +11V. The HMC935LP5E provides a continuously variable phase shift of 0 to 180 degrees from 2 to 20 GHz, with extremely consistent low insertion loss versus phase shift and frequency. The high accuracy HMC935LP5E is monotonic with respect to control voltage and features a typical low phase error of +20/-8 degrees. The HMC935LP5E is housed in an RoHS compliant 5 x 5 mm QFN leadless package.

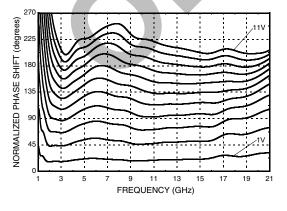
Electrical Specifications, $T_A = +25$ °C, 50 Ohm System

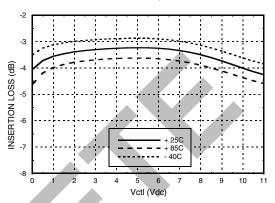
Parameter	Min.	Тур.	Max.	Units
Frequency Range	2		20	GHz
Phase Shift Range		180		deg
Insertion Loss		4		dB
Return Loss (input and output)		15		dB
Control Voltage Range	0.5		11	V
Control Current Range			±1	mA
Input IP3		30		dBm
Input Power @ -5° Shift In Insertion Phase (Vctl = 0.5V)		15		dBm
Input Power @ -3° Shift In Insertion Phase (Vctl = 3.0V)		20		dBm
Phase Voltage Sensitivity		20		deg/V
Phase Error (peak) [1]		+28 / -15		deg
Phase Error (average) [1]		+20 / -8		deg
Modulation Bandwidth		10		MHz
Insertion Phase Temperature Sensitivity		0.07		deg/°C

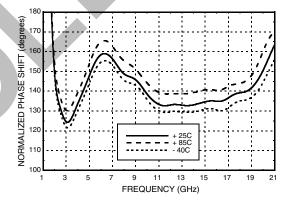

[1] Up to a phase shift of 180 degrees.

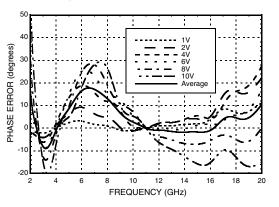


180° ANALOG PHASE SHIFTER, 2 - 20 GHz


Insertion Loss vs. Frequency

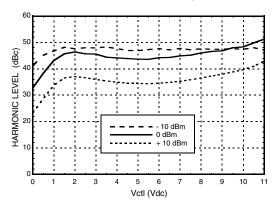

Phase Shift vs. Vctl

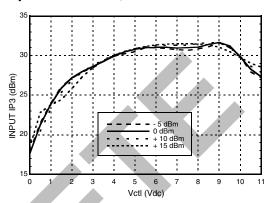

Phase Shift vs. Frequency (Relative to Vctl = 0.5V) Vctl = 0.5 to 11V


Insertion Loss vs. VctI, F = 11 GHz

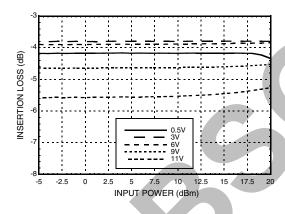
Phase Shift vs. Frequency @ Vctl = 6V (Relative to Vctl = 0.5V)

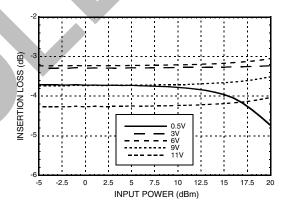
Phase Error vs. Frequency, Fmean = 11 GHz [1]

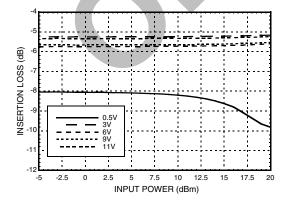

[1] 0 to 10V provides 0 - 180 degrees phase shift range

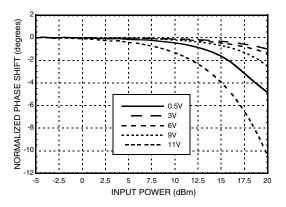


180° ANALOG PHASE SHIFTER, 2 - 20 GHz


Second Harmonics vs. Vctl, F = 11 GHz

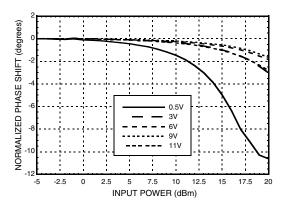

Input IP3 vs. Vctl, F = 11 GHz

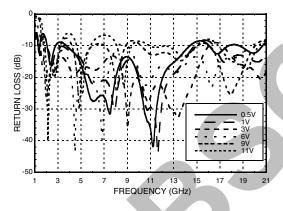

Insertion Loss vs. Pin @ 2 GHz


Insertion Loss vs. Pin @ 11 GHz

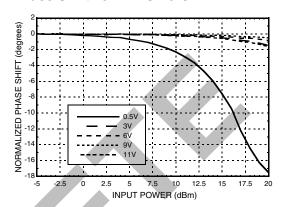
Insertion Loss vs. Pin @ 20 GHz

Phase Shift vs. Pin @ 2 GHz





180° ANALOG PHASE SHIFTER, 2 - 20 GHz


Phase Shift vs. Pin @ 11 GHz

Input Return Loss vs. Frequency, Vctl = 0.5 to +11V

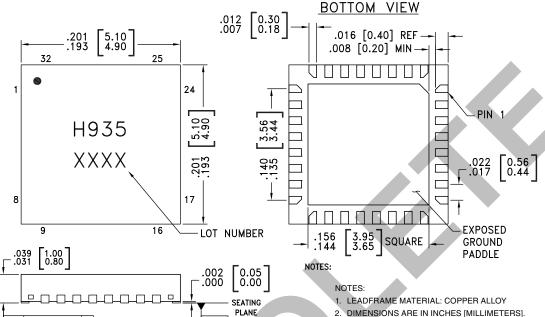
Phase Shift vs. Pin @ 20 GHz

Output Return Loss vs. Frequency, Vctl = 0.5 to +11V

Absolute Maximum Ratings

Frequency Control Voltage (Vfctl)	-0.5 to +15V	
RF Input Power	26 dBm	
Storage Temperature	-65 to +150 °C	
ESD Sensitivity (HBM)	Class 1B	

Reliability Information


Junction Temperature To Maintain 1 Million Hour MTTF	150 °C
Nominal Junction Temperature (T = 85 °C and Pin = 10 dBm)	87 °C
Thermal Resistance (Junction To Ground Paddle)	67 °C/W
Operating Temperature	-40 to +85 °C

180° ANALOG PHASE SHIFTER, 2 - 20 GHz

Outline Drawing

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 3. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15 mm PER SIDE.
- 4. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25 mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 6. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

Package Information

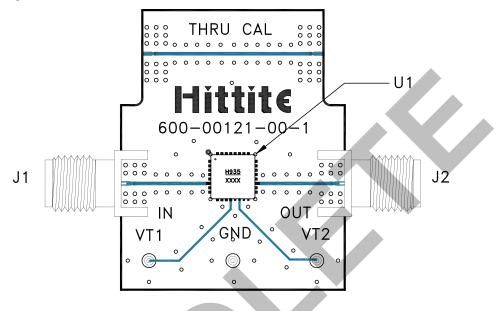
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC935LP5E	RoHS-Compliant Low Stress Injection Molded Plastic	100% Matte Sn	MSL1 [2]	H935 XXXX

[1] 4-Digit lot number XXXX

.003[0.08] C

[2] Max peak reflow temperature of 260 $^{\circ}\text{C}$

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1 - 4, 7 - 13, 15 - 18, 21 - 32	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
5, 20	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	GND O =
6	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN -
19	RFOUT	This pin is AC coupled and matched to 50 Ohms.	RFOUT
14	Vctl	Phase shift control pin. Application of a voltage between 0.5 and 11 volts causes the transmission phase to change. The DC equivalent circuit is a series connected diode and resistor.	Vetl 3nH 120000 10pF 12pF

180° ANALOG PHASE SHIFTER, 2 - 20 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC935LP5E [1]

Item	Description	
J1, J2	Connector, 2.9 mm, 40 GHz Jack	
J4, J5	DC Solder Pin	
U1	HMC935LP5E Analog Phase Shifter, 2-20 GHz	
РСВ	600-00121-00, Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350 or Arlon 25 FR