

STS9D8NH3LL

Dual N-channel 30 V - 0.012 Ω - 9 A - SO-8 low on-resistance STripFET™ Power MOSFET

Features

Туре		V_{DSS}	R _{DS(on)}	Qg	Ι _D
STS9D8NH3LL	Q ₁	30V	< 0.022Ω	7nC	8A
OT OBDOINTIGEE	Q ₂	30V	< 0.015Ω	8nC	9A

- Optimal R_{DS}(on) x Qg trade-off @ 4.5V
- Conduction losses reduced
- Switching losses reduced

Application

Switching applications

Description

This device uses the latest advanced design rules of ST's STrip based technology. The Q1 and Q2 transistors, show respectively, the best gate charge and on-resistance for minimizing the switching and conduction losses. This application specific Power MOSFET has been designed to replace two SO-8 packages in DC-DC converters.

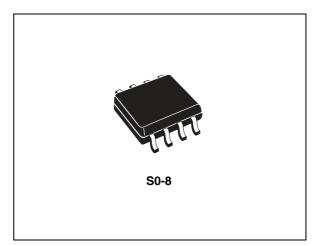
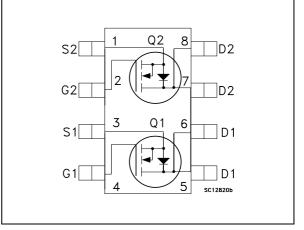



Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STS9D8NH3LL	9D8H3LL-	SO-8	Tape & reel

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	5
3	Test circuit	8
4	Package mechanical data	9
5	Revision history1	1

1 Electrical ratings

Table 2.	Absolute maximum ratings			
Symbol	Parameter	Туре	Value	Unit
V_{DS}	Drain-source voltage (v _{GS} = 0)	Q ₁ Q ₂	30 30	V V
V _{GS}	Gate- source voltage	Q ₁ Q ₂	±16 ±16	V V
Ι _D	Drain current (continuous) at $T_C = 25^{\circ}C$	Q ₁ Q ₂	8 9	A A
Ι _D	Drain current (continuous) at T _C = 100°C	Q ₁ Q ₂	5 6.3	A A
I _{DM} ⁽¹⁾	Drain current (pulsed)	Q ₁ Q ₂	32 36	A A
P _{TOT}	Total dissipation at $T_C = 25^{\circ}C$	Q ₁ Q ₂	2 2	W W
$E_{AS}^{(2)}$	Single pulse avalanche energy		150	mJ

 Table 2.
 Absolute maximum ratings

1. Pulse width limited by safe operating area

2. Starting T_J = 25 °C, I_D = 7.5 A

Symbol	Parameter	Value	Unit
R _{thj-a} ⁽¹⁾	Thermal resistance junction-ambient max	62.5	°C/W
TJ	Thermal operating junction-ambient	150	°C
T _{stg}	Storage temperature	-55 to 150	°C

1. When mounted on 1 inch² FR-4 board, 2 oz. Cu., t \leq 10s

Electrical characteristics 2

(T_{CASE}=25°C unless otherwise specified)

Table 4.	On/off states						
Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	Q ₁ Q ₂	30 30			V V
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V _{DS} = Max rating	Q ₁ Q ₂			1 1	μΑ μΑ
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V _{DS} =Max rating @125°C	Q ₁ Q ₂			10 10	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 16 V	Q ₁ Q ₂			±100 ±100	nA nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS},$ $I_D = 250 \ \mu A$	Q ₁ Q ₂	1 1			V V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 4 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.5 \text{ A}$	Q ₁ Q ₂		0.018 0.012	0.022 0.015	Ω Ω
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 4.5 \text{ A}$	Q ₁ Q ₂		0.020 0.014	0.025 0.0175	Ω Ω

ble 4. On/	off states	

Table 5. Dynamic

Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		Q ₁ Q ₂		857 1070		pF pF
C _{oss}	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0	Q ₁ Q ₂		147 290		pF pF
C _{rss}	Reverse transfer capacitance		Q ₁ Q ₂		20 34		pF pF
Qg	Total gate charge		Q ₁ Q ₂		7 8	10 11	nC nC
Q _{gs}	Gate-source charge	$V_{DD} = 15 \text{ V}, I_D = 8 \text{ A},$ $V_{GS} = 4.5 \text{ V}$ (see Figure 25)	Q ₁ Q ₂		2.5 2		nC nC
Q _{gd}	Gate-drain charge	(000	Q ₁ Q ₂		2.3 2.8		nC nC

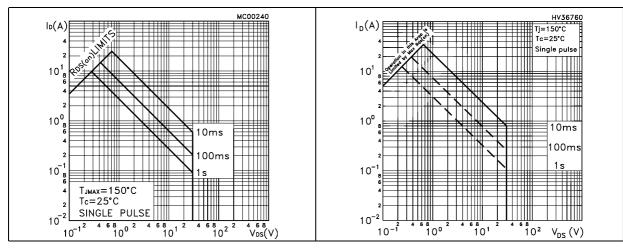
Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
t _{d(on)}		V _{DD} =15 V, I _D =4 A,	Q ₁		12		ns
. ,	Turn-on delay time	V _{DD} =15 V, I _D =4 A, R _G =4.7 Ω,	Q_2		8.2		ns
t _r	Rise time	V _{GS} = 4.5 V	Q ₁		14.5		ns
		(see Figure 27)	Q_2		6		ns
t _{d(off)}		V _{DD} =15 V, I _D =4 A,	Q ₁		23		ns
	Turn-off delay time	R _G =4.7 Ω,	Q_2		27.8		ns
t _f	Fall time	V _{DD} =15 V, I _D =4 A, R _G =4.7 Ω, V _{GS} = 4.5V	Q ₁		8		ns
		(see Figure 27)	Q_2		3.6		ns

Table 6.Switching times

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Туре	Min	Тур.	Max	Unit
I _{SD}	Source-drain current	V _{DD} =15 V, I _D =4 A R _G =4.7 Ω V _{GS} =4.5 V	Q ₁ Q ₂			8 9	A A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)	V _{DD} =15 V, I _D = 4A R _G =4.7 Ω V _{GS} =4.5 V	Q ₁ Q ₂			32 36	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 8 A, V _{GS} = 0	Q ₁ Q ₂			1.5 1.5	V V
t _{rr} Q _{rr}	Reverse recovery time Reverse recovery charge	I _{SD} = 8 A, V _{DD} = 15 V di/dt = 100 A/μs,	Q ₁ Q ₂ Q ₁ Q ₂		15 22.8 5.7 14.9		ns ns nC nC
I _{RRM}	Reverse recovery current	T _j = 150°C <i>(see Figure 26)</i>	Q ₂ Q ₁ Q ₂		0.76 1.3		A A

1. Pulse width limited by safe operating area.


2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

57

2.1 Electrical characteristics (curves)

Figure 3. Safe operating area for Q2

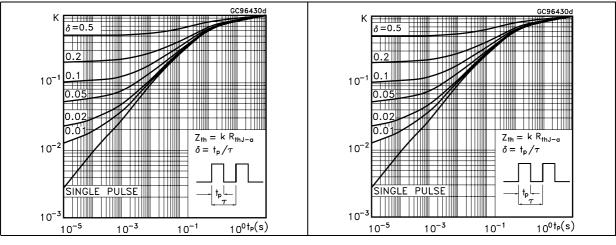
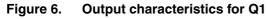
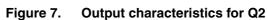
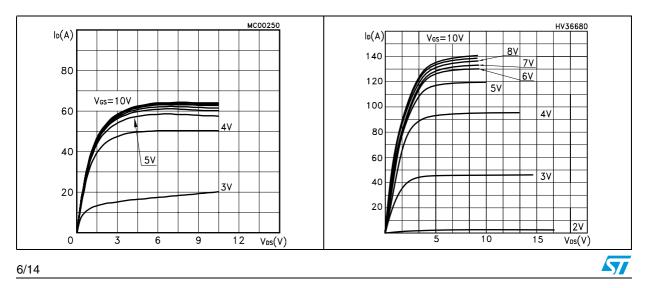





Figure 5.

Thermal impedance for Q2

Figure 8. **Transfer characteristics for Q1**

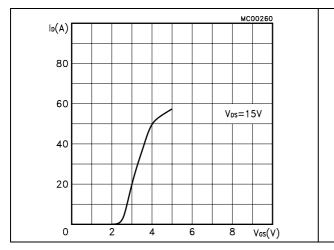


Figure 10. Static drain-source on resistance for Q1

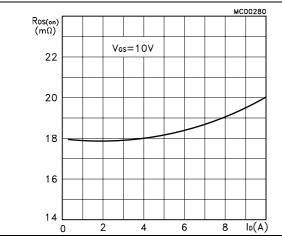
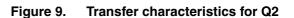



Figure 12. Normalized BV_{DSS} vs temperature Figure 13. Normalized BV_{DSS} vs temperature for Q1

57

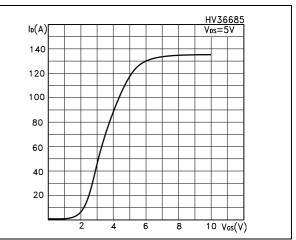
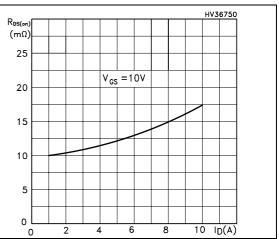
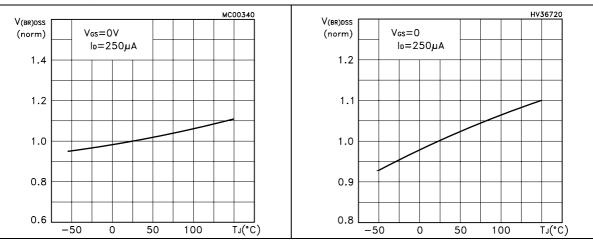
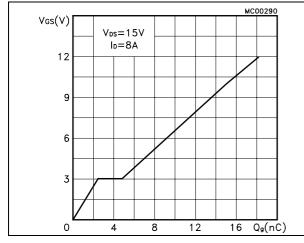




Figure 11. Static drain-source on resistance for Q2



for Q2

7/14

Figure 14. Gate charge vs gate-source voltage Figure 15. Gate charge vs gate-source voltage for Q1 for Q2

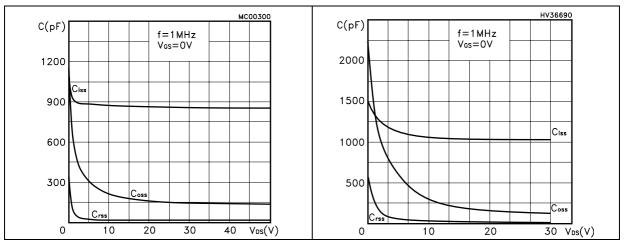
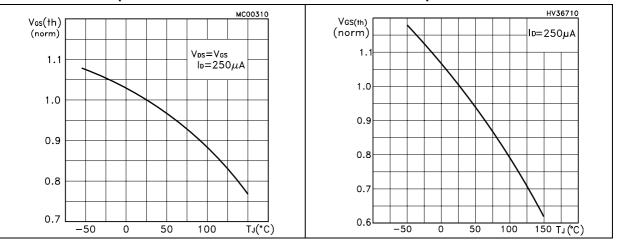



Figure 18. Normalized gate threshold voltage vs temperature for Q1

Figure 19. Normalized gate threshold voltage vs temperature for Q2

 $V_{0S}(V) = 15V = 15V = 10$ $V_{DD} = 10$ $V_{DD} = 15V = 10$ $V_{DD} = 10$

Figure 17. Capacitance variations for Q2

Figure 20. Normalized on resistance vs temperature for Q1

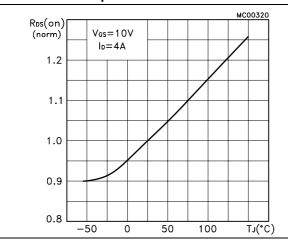


Figure 22. Source-drain diode forward characteristics for Q1

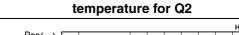
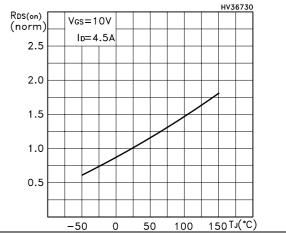
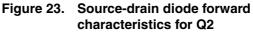
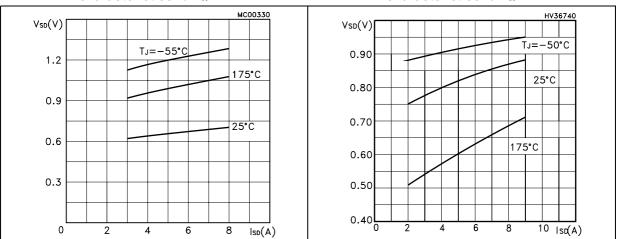
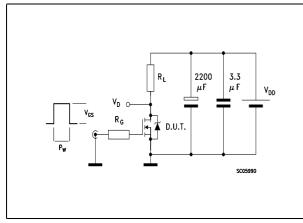
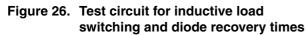
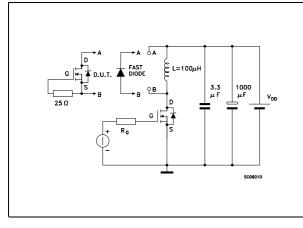





Figure 21.

Normalized on resistance vs



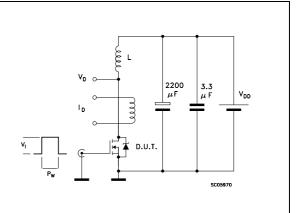




3 Test circuit

Figure 24. Switching times test circuit for resistive load





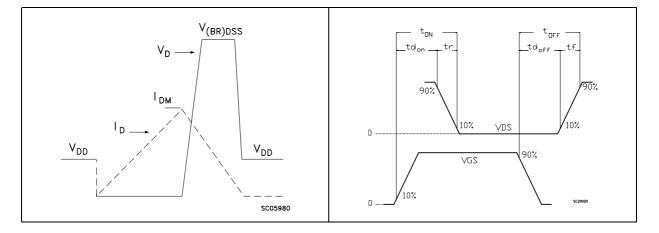
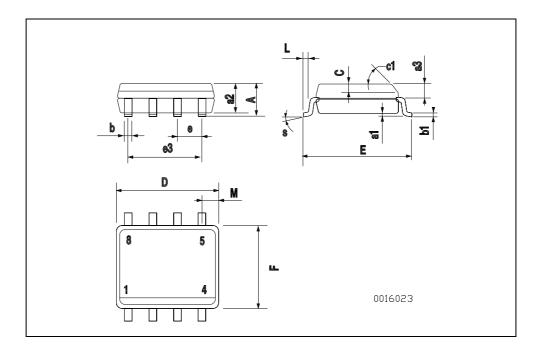

V DD 12V ‡7K Ω 1ΚΩ **⊥**100nF I_G=CONST V₁=20V=V_{GMAX} 100 Ω D.U.T. ¥ \cap _____2200 _____μF 2.7KΩ ۷ <u>1KΩ</u> SC06000

Figure 25. Gate charge test circuit

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

57

DIM.		mm.		inch			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.25	0.003		0.009	
a2			1.65			0.064	
a3	0.65		0.85	0.025		0.033	
b	0.35		0.48	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.019	
c1		•	45 ((typ.)			
D	4.8		5.0	0.188		0.196	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.14		0.157	
L	0.4		1.27	0.015		0.050	
М			0.6			0.023	

SO-8 MECHANICAL DATA

5 Revision history

Table 8. Document revision history

Date	Revision	Changes
05-Jan-2007	1	First release
06-Mar-2007	2	Some value changed on <i>Table 4</i> (R _{DS(on)} for Q2)
10-Dec-2007	3	Added E _{AS} value on Table 2: Absolute maximum ratings

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

