

STE145N65M5

N-channel 650 V, 0.012 Ω typ., 143 A MDmesh™ M5 Power MOSFET in an ISOTOP package

Datasheet - production data

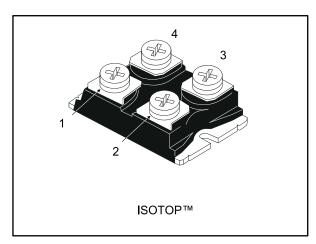
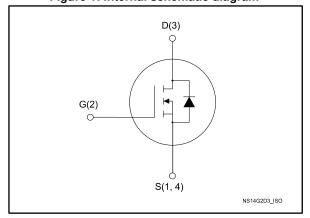



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	I _D
STE145N65M5	710 V	0.015 Ω	143 A

- Extremely low R_{DS(on)}
- · Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

Applications

Switching applications

Description

This device is an N-channel Power MOSFET based on the MDmesh™ M5 innovative vertical process technology combined with the well-known PowerMESH™ horizontal layout. The resulting product offers extremely low onresistance, making it particularly suitable for applications requiring high power and superior efficiency.

Table 1: Device summary

Order code	Marking	Package	Packaging
STE145N65M5	145N65M5	ISOTOP	Tube

Contents STE145N65M5

Contents

1	Electric	al ratings	3
		cal characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	ISOTOP package information	10
5	Revisio	n history	12

STE145N65M5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I_D	Drain current (continuous) at T _C = 25 °C	143	Α
I_D	Drain current (continuous) at T _C = 100 °C	90	Α
$I_{DM}^{(1)}$	Drain current (pulsed)	572	Α
P _{TOT}	Total dissipation at T _C = 25 °C	679	W
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by Tj max)	12	Α
E _{AS}	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} , V_{DD} = 50 V)	2420	mJ
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
V _{ISO}	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, $t=60\ s$)	2.5	kV
T_{stg}	Storage temperature	- 55 to 150	· °C
T _j	Max. operating junction temperature	150	

Notes:

Table 3: Thermal data

Symbol	Parameter		Unit
R _{thj-case}	Thermal resistance junction-case max	0.184	°C/W
R _{thj-amb}	R _{thi-amb} Thermal resistance junction-ambient max		°C/W

⁽¹⁾Pulse width limited by safe operating area.

 $⁽²⁾ I_{SD} \leq 143 \text{ A, di/dt} \leq 400 \text{ A/µs; } V_{DS(peak)} < V_{(BR)DSS}, V_{DD} = 400 \text{ V}.$

Electrical characteristics STE145N65M5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	650			V
	Zara gata valtaga drain augrant	$V_{GS} = 0 \text{ V},$ $V_{DS} = 650 \text{ V}$			10	μΑ
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 650 V, T _C = 125 °C			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 V$, $V_{GS} = \pm 25 V$			±100	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 69 \text{ A}$		0.012	0.015	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		1	18500	1	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	1	413	1	pF
C_{rss}	Reverse transfer capacitance	• us — • •	1	11	1	pF
C _{o(er)} ⁽¹⁾	Equivalent output capacitance energy related		ı	415	ı	pF
$C_{o(tr)}^{(2)}$	Equivalent output capacitance time related	$V_{GS} = 0$, $V_{DS} = 0$ to 520 V	-	1950	-	pF
R _G	Intrinsic gate resistance f = 1 MHz, open drain		1	0.7	1	Ω
Q_g	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 69 \text{ A},$	1	414	1	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate	-	114	-	nC
Q_{gd}	Gate-drain charge	charge behavior")	-	164	-	nC

Notes:

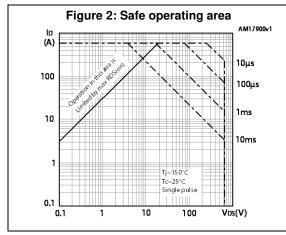
 $^{^{(1)}}C_{o(er)}$ is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}C_{o(tr)} \text{ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}}$

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(V)}	Voltage delay time	$V_{DD} = 400 \text{ V}, I_D = 85 \text{ A}$	1	255	-	ns
t _{r(V)}	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 16: "Test circuit for	1	11	-	ns
t _{f(i)}	Current fall time	inductive load switching and	-	82	-	ns
t _{C(off)}	Crossing time	diode recovery times" and Figure 19: "Switching time waveform")	-	88	-	ns

Table 7: Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		1		143	Α
I _{SDM} , (1)	Source-drain current (pulsed)		-		572	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 143 A	1		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 143 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	1	568		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 100 V (see Figure 16: "Test circuit for inductive load	-	14.5		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	1	51		Α
t _{rr}	Reverse recovery time	$I_{SD} = 143 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	728		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 100 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 16: "Test circuit for	-	24.5		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	67		Α

Notes

 $^{^{(1)}}$ Pulse width is limited by safe operating area

 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.2 Electrical characteristics (curves)

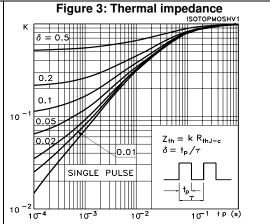
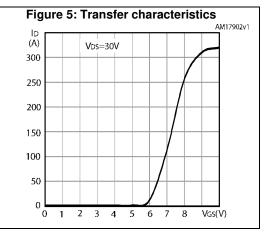
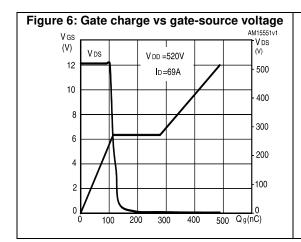
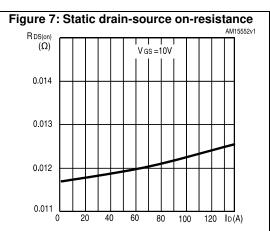
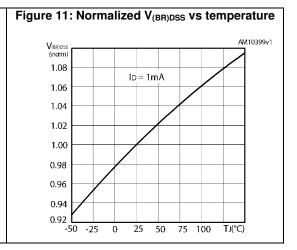





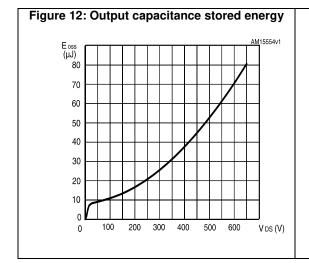
Figure 4: Output characteristics VGS=10V 300 8V 250 200 150 7V 100 50 6V 10 15 20 25 V_{DS}(V) 0

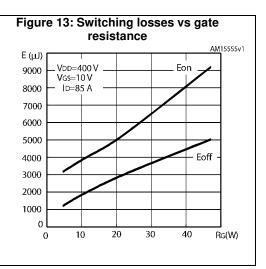
STE145N65M5 Electrical characteristics

Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)}
(norm)
1.10

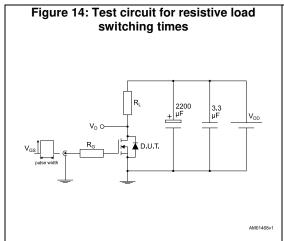

1_D= 250μA
V_{DS}= V_{GS}


1.00


0.90

0.80

0.70
-50 -25 0 25 50 75 100 T_J(°C)



The previous figure E_{on} includes reverse recovery of a SiC diode.

Test circuits STE145N65M5

3 Test circuits

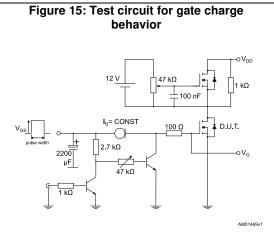
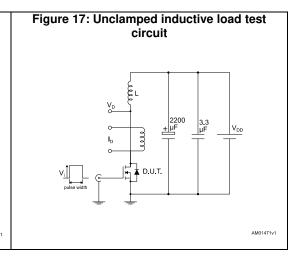
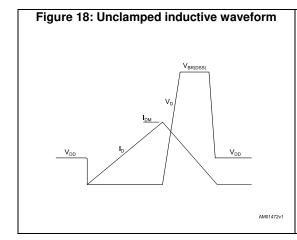
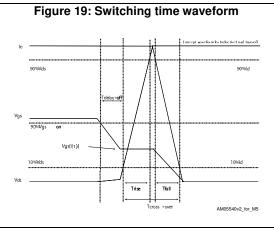





Figure 16: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 ISOTOP package information

Figure 20: ISOTOP outline

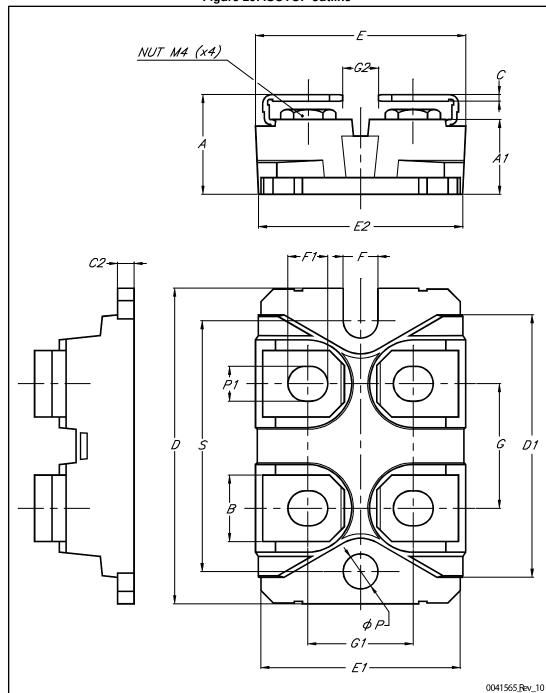


Table 8: ISOTOP mechanical data

		mm	
Dim.	Min.	Тур.	Max.
Α	11.80		12.20
A1	8.90		9.10
В	7.80		8.20
С	0.75		0.85
C2	1.95		2.05
D	37.80		38.20
D1	31.50		31.70
Е	25.15		25.50
E1	23.85		24.15
E2		24.80	
G	14.90		15.10
G1	12.60		12.80
G2	3.50		4.30
F	4.10		4.30
F1	4.60		5
ØP	4		4.30
P1	4		4.40
S	30.10		30.30

Revision history STE145N65M5

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
18-Nov-2013	1	First release.
12-Nov-2015	2	Updated title, features and description on cover page. Document status promoted from preliminary to production data. Modified: Table 2: "Absolute maximum ratings" and Figure 12: "Output capacitance stored energy" Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

