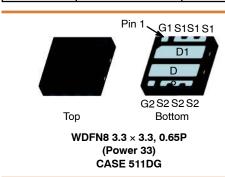
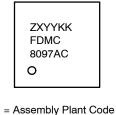
onsemi

2.4 A


MOSFET – Dual, N & P-Channel, POWERTRENCH[®]

V _{DS} MAX	R _{DS(on)}	
150 V	155 m Ω @ 10 V	
	212 mΩ @ 6 V	


P-Channel

N-Channel

V _{DS} MAX	R _{DS(on)}	I _D MAX
–150 V	1200 m Ω @ –10 V	–0.9 A
	1400 mΩ @ −6 V	



MARKING DIAGRAM

FDMC8097AC = Specific Device Code

ORDERING INFORMATION

	Device	Package	Shipping [†]
F	DMC8097AC	WDFN8 (Pb-Free, Halide Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

N-Channel: 150 V, 2.4 A, 155 m Ω P-Channel: -150 V, -0.9 A, 1200 m Ω

FDMC8097AC

General Description

These dual N and P-Channel enhancement mode Power MOSFETs are produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance. Shrinking the area needed for implementation of active clamp topology; enabling best in class power density.

Features

- Q1: N-Channel
- Max $R_{DS(on)} = 155 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 2.4 \text{ A}$
- Max $R_{DS(on)} = 212 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 2 \text{ A}$ Q2: P-Channel
- Max $R_{DS(on)} = 1200 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -0.9 \text{ A}$
- Max $R_{DS(on)} = 1400 \text{ m}\Omega$ at $V_{GS} = -6 \text{ V}$, $I_D = -0.8 \text{ A}$
- Optimised for Active Clamp Forward Converters
- Pb-Free, Halide Free and RoHS Compliant

Applications

- DC-DC Converter
- Active Clamp

MOSFET MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

Symbol		Parameter		Q1	Q2	Unit
V _{DS}	Drain to Source Voltage				-150	V
V_{GS}	Gate to Source Voltage				±25	V
I _D	Drain Current	Continuous (Note 5)	Continuous (Note 5) $T_C = 25^{\circ}C$ Continuous (Note 5) $T_C = 100^{\circ}C$		-2.0	А
		Continuous (Note 5)			-1.2	
		Continuous	$T_A = 25^{\circ}C$	2.4 (Note 1a)	-0.9 (Note 1b)	
		Pulsed (Note 4)		33	-8.8	
E _{AS}	Single Pulse Avalanche En	ergy (Note 3)		24	6	mJ
PD	Power Dissipation for Singl	e Operation	$T_A = 25^{\circ}C$	1.9 (Note 1a)	1.9 (Note 1b)	W
			$T_A = 25^{\circ}C$	0.8 (Note 1c)	0.8 (Note 1d)	
		$T_{C} = 25^{\circ}C$		14	10	
T _J , T _{STG}	Operating and Storage Jun	ction Temperature Range	•	–55 to	o +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Characteristic	Q1	Q2	Unit
R _{0JA} Thermal Resistance, Junction-to-Ambient		65 (Note 1a)	65 (Note 1b)	°C/W
R _{0JA} Thermal Resistance, Junction-to-Ambient		155 (Note 1c)	155 (Note 1d)	
R_{\thetaJC}	Thermal Resistance, Junction-to-Case	8.9	12.5	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Туре	Min	Тур	Max	Unit			
OFF CHAR	OFF CHARACTERISTICS									
BV _{DSS}	Drain to Source Breakdown Voltage	$ I_D = 250 \; \mu \text{A}, \; V_{\text{GS}} = 0 \; \text{V} \\ I_D = -250 \; \mu \text{A}, \; V_{\text{GS}} = 0 \; \text{V} $	Q1 Q2	150 -150	-		V			
ΔBV _{DSS} / Breakdown Voltage Temperature ΔT _J Coefficient		I_D = 250 µA, referenced to 25°C I_D = -250 µA, referenced to 25°C	Q1 Q2	-	98 122		mV/°C			
I _{DSS} Zero Gate Voltage Drain Current		V_{DS} = 120 V, V_{GS} = 0 V V_{DS} = -120 V, V_{GS} = 0 V	Q1 Q2	-	-	1 _1	μΑ			
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V V_{GS} = ±25 V, V_{DS} = 0 V	Q1 Q2			±100 ±100	nA			

ON CHARACTERISTICS

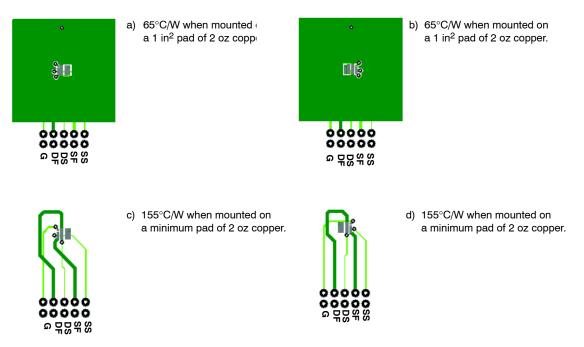
V _{GS(th)}	Gate to Source Threshold Voltage	$\begin{array}{l} V_{GS}=V_{DS},\ I_{D}=250\ \mu A\\ V_{GS}=V_{DS},\ I_{D}=-250\ \mu A \end{array}$	Q1 Q2	2.0 -2.0	3.1 -3.0	4.0 -4.0	V
${\Delta V_{GS(th)} \over \Delta T_J}$ /	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C I_D = -250 µA, referenced to 25°C	Q1 Q2	-	-9 -6	-	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance		Q1		124 155 245	155 212 306	mΩ
		$ \begin{array}{l} V_{GS} = -10 \; V, \; I_D = -0.9 \; A \\ V_{GS} = -6 \; V, \; I_D = -0.8 \; A \\ V_{GS} = -10 \; V, \; I_D = -0.9 \; A, \; T_J = 125^\circ C \end{array} $	Q2		930 1030 1682	1200 1400 2171	
9fs	Forward Transconductance	$V_{DD} = 10 \text{ V}, \text{ I}_{D} = 2.4 \text{ A}$ $V_{DD} = -10 \text{ V}, \text{ I}_{D} = -0.9 \text{ A}$	Q1 Q2	-	6.4 0.75	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	Q1 V_{DS} = 75 V, V_{GS} = 0 V, f = 1 MHz	Q1 Q2	-	279 162	395 230	pF
C _{oss}	Output Capacitance	Q2 V _{DS} = -75 V, V _{GS} = 0 V, f = 1 MHz	Q1 Q2	-	26 13	40 25	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2	-	1.4 0.6	5 5	pF
Rg	Gate Resistance		Q1 Q2	0.1 0.1	0.6 3.3	1.5 8.3	Ω

SWITCHING CHARACTERISTICS

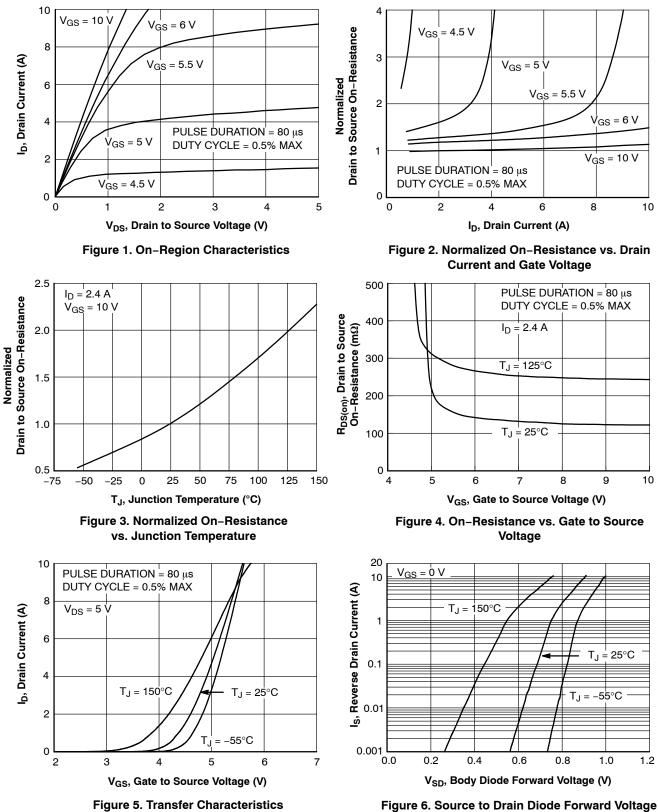
t _{d(on)} t _r	Turn-On Delay Time Rise Time	Q1 $V_{DD} = 75 \text{ V}, \text{ I}_{D} = 2.4 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ Q2		Q1 Q2 Q1 Q2		5.4 5.2 1.3 1.6	11 11 10 10	ns ns
t _{d(off)}	Turn-Off Delay Time		V_{DD} = -75 V, I _D = -0.9 A, V _{GS} = -10 V, R _{GEN} = 6 Ω		-	9.1 7.4	18 15	ns
t _f	Fall Time			Q1 Q2		2.2 6.3	10 13	ns
Q _{g(TOT)}	Total Gate Charge	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V \ to \ 10 \ V \\ V_{GS} = 0 \ V \ to \ -10 \ V \end{array}$	Q1 V _{DD} = 75 V, I _D = 2.4 A	Q1 Q2		4.4 2.8	6.2 4.0	nC
		$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V \ to \ 6 \ V \\ V_{GS} = 0 \ V \ to \ -6 \ V \end{array}$	Q2 V _{DD} = -75 V I _D = -0.9 A	Q1 Q2		2.9 1.8	4.1 2.6	nC
Q _{gs}	Gate to Source Charge	Q1 V _{DD} = 75 V, I _D = 2.4 A		Q1 Q2	_	1.3 0.8	_	nC
Q _{gd}	Gate to Drain "Miller" Charge	Q2 V _{DD} = -75 V I _D = -0.9 A		Q1 Q2	_	1.0 0.7	_	nC


ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Symbol Parameter		Test Condition	Туре	Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS								
V _{SD}	Source-Drain Diode Forward Voltage	V_{GS} = 0 V, I_S = 2.4 A (Note 2) V_{GS} = 0 V, I_S = -0.9 A (Note 2)	Q1 Q2		0.8 -0.9	1.3 –1.3	V	
t _{rr}	Reverse Recovery Time	Q1 I _F = 2.4 A, di/dt = 100 A/s	Q1 Q2	-	50 44	80 71	ns	
Q _{rr}	Reverse Recovery Charge	Q2 I _F = -0.9 A, di/dt = 100 A/s	Q1 Q2		43 68	69 109	nC	

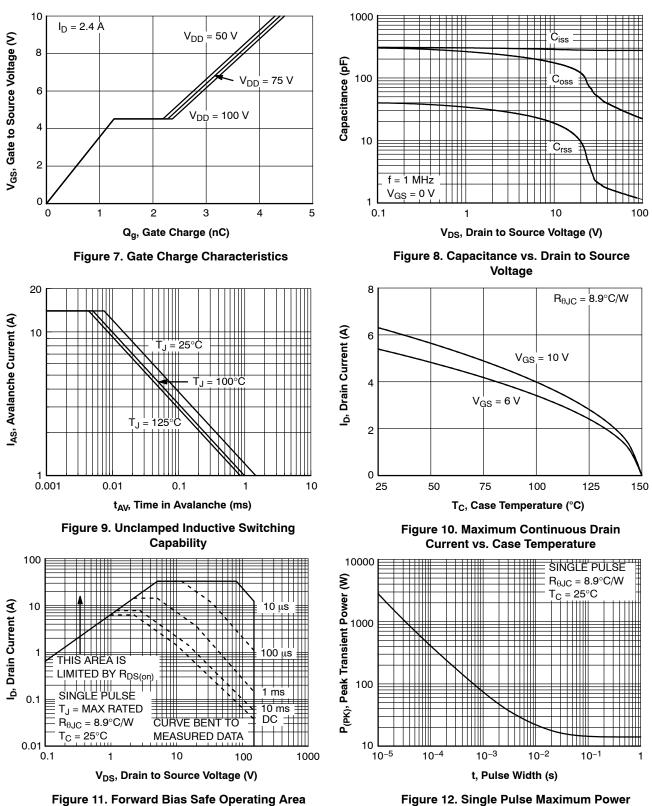
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:


1. R_{0JA} is determined with the device mounted on a 1in2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. Q1: E_{AS} of 24 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 4 A, V_{DD} = 150 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 14 A. Q2: E_{AS} of 6 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = -2 A, V_{DD} = -150 V, V_{GS} = -10 V. 100% test at L = 0.1 mH, I_{AS} = -8 A. 4. Q1: Pulsed Id please refer to Fig 11 SOA graph for more details.
- Q2: Pulsed Id please refer to Fig 24 SOA graph for more details.
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL)


 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

vs. Source Current

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (continued)

(T_J = 25°C unless otherwise noted)

Dissipation

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

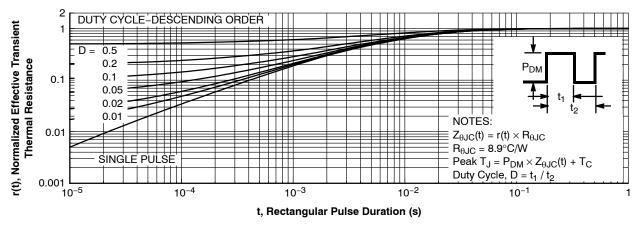
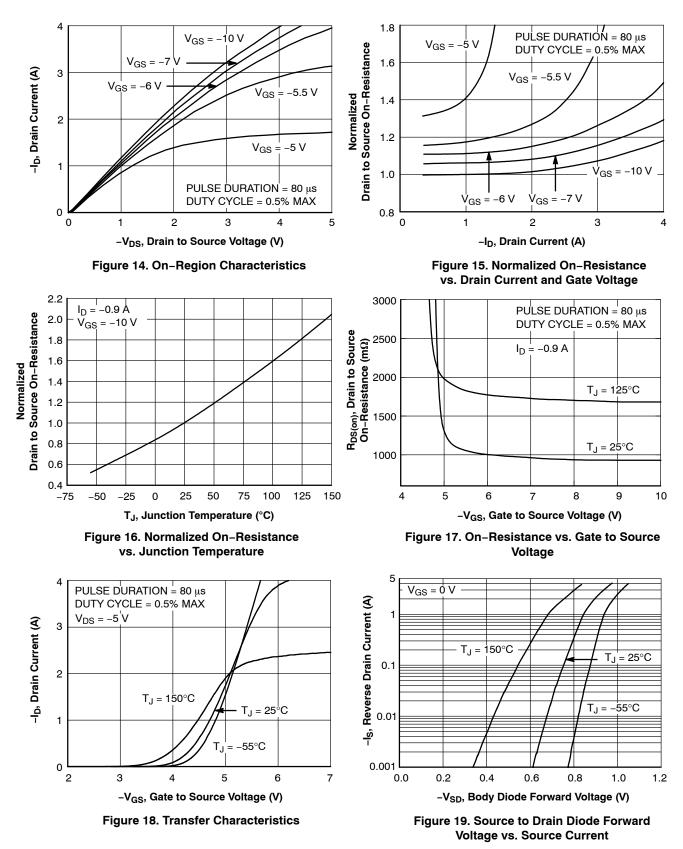
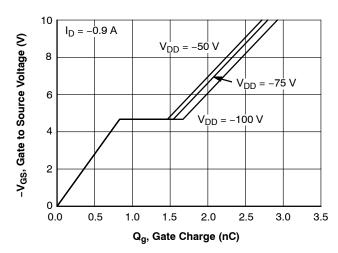



Figure 13. Junction-to-Case Transient Thermal Response Curve


TYPICAL CHARACTERISTICS (Q2 P-CHANNEL)

(T_J = 25°C unless otherwise noted)

TYPICAL CHARACTERISTICS (Q2 P-CHANNEL) (continued)

(T_J = 25°C unless otherwise noted)

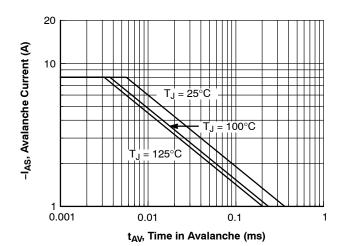


Figure 22. Unclamped Inductive Switching Capability

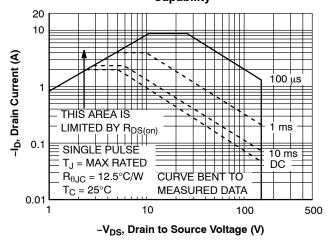


Figure 24. Forward Bias Safe Operating Area

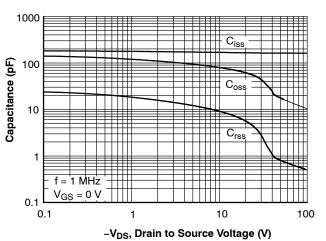


Figure 21. Capacitance vs. Drain to Source

Voltage

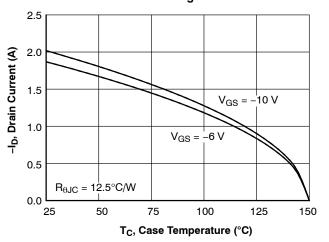


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

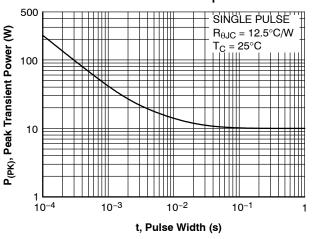


Figure 25. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q2 P-CHANNEL) (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

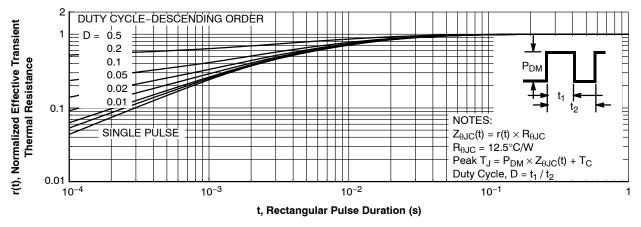


Figure 26. Junction-to-Case Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

1. DIMENSIONING AND TOLERANCING PER

CONTROLLING DIMENSION: MILLIMETERS

TERMINALS AND IS MEASURED BETWEEN 0.15 AND 0.30MM FROM THE TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED

MILLIMETERS

NDM.

0.75

0.20 REF

0.35

.65 REF

3.00

2.50

3.00

1.50

0.65 BSC

0.35 REF

0.32

0.163 REF

MAX.

0.80

0.05

0.40

3.10

2.55

3.10

1.60

0.37

DIMENSION & APPLIES TO PLATED

PAD AS WELL AS THE TERMINALS.

MIN.

0.70

0.00

0.30

2.90

2.45

2.90

1.40

0.25

0.27

ASME Y14.5M, 2009.

DIM

А

A1

A3

b

b2

D

D2

E2

e

К

К2

L

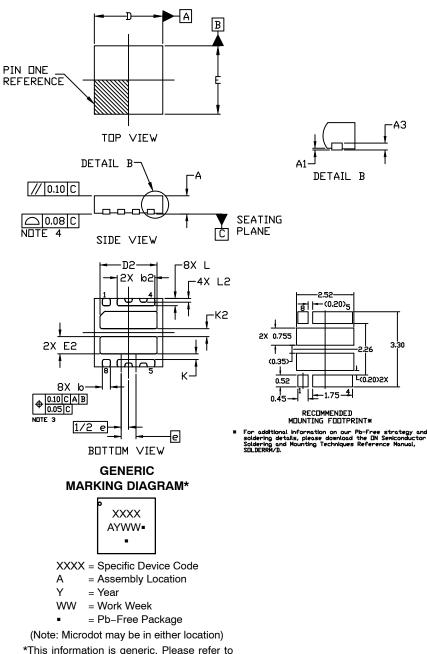
L2

Е

WDFN8 3x3, 0.65P
CASE 511DG
ISSUE A

NDTES:

2.


з.

4.

·АЗ

3.30

DATE 12 FEB 2019

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13623G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	WDFN8 3x3, 0.65P		PAGE 1 OF 1				

ON Semiconductor and 🔘 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales