19-0425; Rev 2; 3/07 EVALUATION KIT AVAILABLE

3V, Ultra-Low-Power Quadrature Modulator

General Description

The monolithic MAX2452 is a quadrature modulator with supporting oscillator and divide-by-8 prescaler. It operates from a single +3V supply and draws only 4.1mA. The modulator accepts differential I and Q baseband signals with amplitudes up to 1.35Vp-p and bandwidths up to 15MHz. It produces a differential output up to 80MHz.

Pulling the CMOS-compatible ENABLE pin low reduces the supply current to 2µA. To minimize spurious feedback, the MAX2452's internal oscillator is set at twice the IF via external tuning components. The oscillator and associated phase shifters produce differential signals exhibiting low amplitude and phase imbalance, yielding 42dB sideband rejection. The MAX2452 comes in a 16-pin narrow SO package.

Applications

Digital Cordless Phones GSM and North American Cellular Phones Wireless LANs

Digital Communications

Two-Way Pagers

Features

- ♦ IF Output Frequency up to 80MHz
- Input Bandwidth up to 15MHz
- On-Chip Oscillator with External Tuning Circuit
- On-Chip Divide-by-8 Prescaler
- Integrated Quadrature Phase Shifters
- Self-Biased Differential Baseband Inputs
- CMOS-Compatible Enable
- 4.1mA Operating Supply Current 2µA Shutdown Supply Current

Ordering Information

Functional Diagram

÷4

Σ

MAXIM

MAX2452

12

¹⁶-- IF

1 ĪĒ

- PRE OUT

PRESCALER

PART	TEMP. RANGE	PIN-PACKAGE
MAX2452ISE	-20°C to +85°C	16 Narrow SO

÷2

÷2

MASTER BIAS

LOCAL

OSCILLATOR

BANDGAP

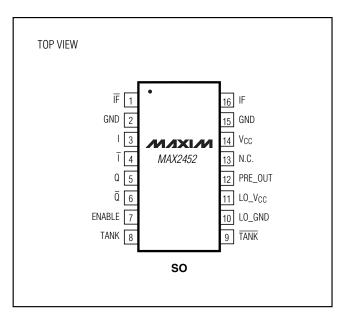
2, 15

GND

QUADRATURE

GENERATOR

PHASE


90°

MODULATOR

BIAS

7

ENABLE

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642. or visit Maxim's website at www.maxim-ic.com.

LO_V_{CC}

TANK

TANK

LO GND

8

_10

1 -Z Ī

0

 V_{CC}

6 Q

14

9

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

V _{CC} , LO_V _{CC} to GND	0.3V to +4.5V
ENABLE, TANK, TANK, I, I, Q, Q to GND	Vcc + 0.3V
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
SO (derate 8.33mW/°C above +70°C)	667mW

Operating Temperature Range	20°C to +85°C
Storage Temperature Range	65°C to +165°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

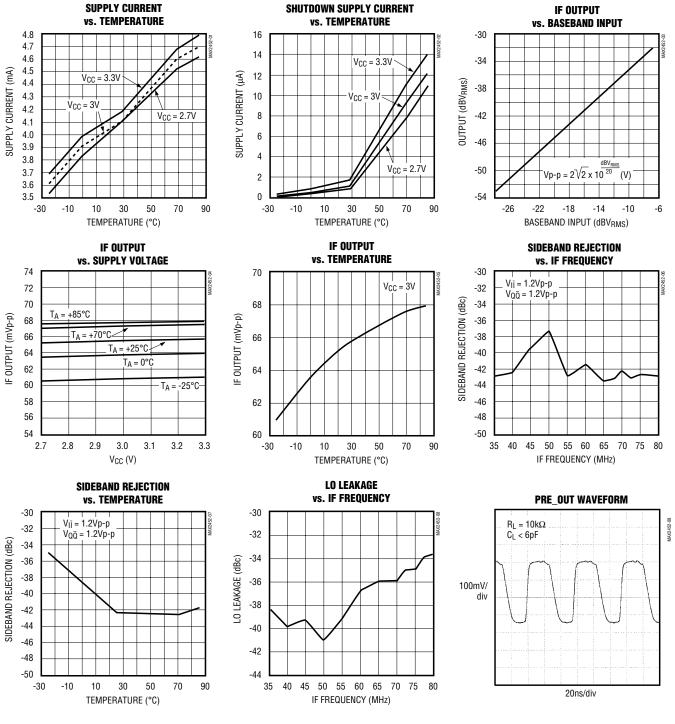
(V_{CC} = LO_V_{CC} = 2.7V to 3.3V, T_A = -20°C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	Vcc, LO_Vcc		2.7		3.3	V
Supply Current	ICC ON	Enable = $V_{CC} - 0.4V$		4.1	7	mA
Shutdown Supply Current	ICC OFF	Enable = 0.4V		2	50	μA
Enable/Disable Time	ton/off			10		μs
ENABLE Bias Current	I _{EN}	Enable = $V_{CC} - 0.4V$		1	10	μA
ENABLE Low Voltage	VENL				0.4	V
ENABLE High Voltage	VENH		V _{CC} - 0.4			V
IF Voltage Level	VIF		V _{CC} - 1.7		V _{CC} - 1.35	V
IF Voltage Level	VIF		V _{CC} - 1.7		V _{CC} - 1.35	V
TANK Voltage Level	Vtank		LO_V _{CC} - 1.1		LO_V _{CC} - 0.8	V
TANK Voltage Level	Vtank		LO_Vcc - 1.1		LO_VCC - 0.8	V
I, I, Q, Q Voltage Level	V _I , V _I , V _Q , V _Q		1.25	1.5	1.75	V
Differential Input Impedance	ZII, ZQQ		35	44		kΩ

AC ELECTRICAL CHARACTERISTICS

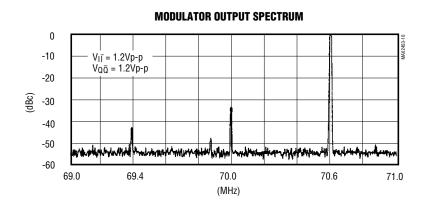
 $(V_{CC} = LO_V_{CC} = 3.0V, f_{OSC} = 140MHz, ENABLE = 2.6V, f_{II} = f_{QQ} = 600kHz, T_A = -20^{\circ}C$ to +85°C, unless otherwise noted.)

SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS
VIIp-p, VQQp-p	(Note 1)		1.2	1.35	Vp-p
BWIQ	(Note 1)			15	MHz
VIFIFp-p	$V_{II} = V_{QQ} = 1.2$ Vp-p, R _L = 200k Ω differential, C _L < 5pF differential		65		mVp-p
			<±0.3		dB
			<±3		degrees
			42		dB
	$V_{II} = V_{QQ} = 1.2Vp-p$		-36		dBc
fosc	(Notes 1, 2)	70	140	160	MHz
VPRE_OUT	$R_L = 10k\Omega, C_L < 6pF$		0.35		Ур-р
SR _{PRE_OUT}	$R_L = 10k\Omega$, $C_L < 6pF$, rising edge, $T_A = +25^{\circ}C$		60		V/µs
	VIIp-p, VQQp-p BWIQ VIFIFp-p G G G G VPRE_OUT	$\begin{array}{c} \text{VIIp-p, VQQp-p} & (\text{Note 1}) \\ \\ \text{BW}_{IQ} & (\text{Note 1}) \\ \\ \text{VIFIFp-p} & \begin{array}{c} \text{VII = V_{QQ} = 1.2Vp-p, R_L = 200k\Omega} \\ \text{differential, C_L < 5pF differential} \\ \\ \\ OUTION OF CONTINUES $	$\begin{array}{c c} V_{IIp-p}, V_{QQp-p} & (Note 1) & & & \\ \hline W_{IQ} & (Note 1) & & & \\ \hline W_{IFIFp-p} & V_{II} = V_{QQ} = 1.2Vp-p, \ R_L = 200k\Omega \\ differential, \ C_L < 5pF \ differential & & \\ \hline & & & \\ \hline \end{array} \end{array}$	VIIp-p. VQQp-p (Note 1) 1.2 BWIQ (Note 1) 1.2 VIFIFp-p VII = VQQ = 1.2Vp-p, RL = 200kΩ differential, CL < 5pF differential	VIIP-p. VQQp-p (Note 1) 1.2 1.35 BWIQ (Note 1) 15 VIFIFp-p VII = VQQ = 1.2Vp-p, RL = 200kΩ differential, CL < 5pF differential


Note 1: Guaranteed by design, not tested.

Note 2: The frequency range can be extended in either direction, but has not been characterized. At higher frequencies, the IF output level may decrease and distortions may increase.

Typical Operating Characteristics


 $(V_{CC} = LO_V_{CC} = 3.0V, f_{OSC} = 140MHz, ENABLE = 2.6V, f_{II} = f_{QQ} = 600kHz, R_L (IF, IF) = 200k\Omega$ differential, C_L (IF, IF) < 5pF differential, T_A = +25°C, unless otherwise noted.)

3

Typical Operating Characteristics (continued)

 $(V_{CC} = LO_V_{CC} = 3.0V, f_{OSC} = 140MHz, ENABLE = 2.6V, f_{II} = f_{QQ} = 600kHz, R_L (IF, IF) = 200k\Omega differential, C_L (IF, IF) < 5pF differential, T_A = +25°C, unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION
1	IF	IF Inverting Output
2, 15	GND	Ground
3	I	Inphase Input
4	I	Inphase Inverting Input
5	Q	Quadrature Input
6	Q	Quadrature Inverting Input
7	ENABLE	Enable Control, active high
8	TANK	Local-Oscillator Resonant Tank Input
9	TANK	Local-Oscillator Resonant Tank Inverting Input
10	LO_GND	Local-Oscillator Ground
11	LO_V _{CC}	Local-Oscillator Supply
12	PRE_OUT	Local-Oscillator Divide-by-8 Prescaled Output
13	N.C.	No Connect, no internal connection to this pin
14	Vcc	Modulator Supply
16	IF	IF Output

MAX2452

Detailed Description

The MAX2452 quadrature modulator integrates several important RF functions on a single chip. It includes differential buffers for the baseband inputs, two double-balanced mixers, a local oscillator, a quadrature phase generator, and a divide-by-8 prescaler. The prescaler simplifies the implementation of a phase-locked loop. Each of the functional blocks (shown in the *Functional Diagram*) is described in detail in the following sections.

Local Oscillator

The local-oscillator section is formed by an emitter-coupled differential pair. Figure 1 shows the equivalent local-oscillator circuit schematic. An external LC resonant tank determines the oscillation frequency, and the Q of this resonant tank determines the phase noise of the oscillator. The oscillation frequency is twice the IF frequency, so that the quadrature phase generator can use two latches to generate precise quadrature signals.

Quadrature Phase Generator

The quadrature phase generator uses two latches to divide the local-oscillator frequency by two, and generates two precise quadrature signals. Internal limiting amplifiers shape the signals to approximate square waves to drive the Gilbert-cell mixers in the modulator. The inphase signal (at half the local-oscillator frequency) is further divided by four for an external phaselocked loop.

Modulator The modulator accepts up to 1.35Vp-p I and Q differential baseband signals up to 15MHz, and upconverts them to higher-frequency IF signals. Since these inputs are biased internally at around 1.5V, you can improve carrier suppression by externally capacitively coupling the signals into these high-impedance ports (the differential input impedance is approximately 44k Ω). The self-bias design is for very low on-chip offset, resulting in excellent carrier suppression. The IF output is designed to drive a high impedance (>20k Ω), such as an IF buffer or an upconverter mixer.

3V, Ultra-Low-Power Quadrature Modulator

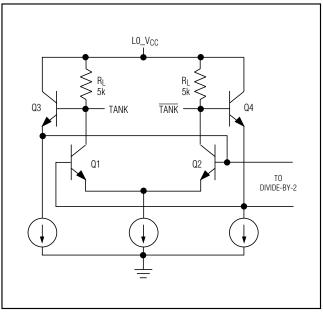


Figure 1. Local-Oscillator Equivalent Circuit

Prescaler

The prescaler output, PRE_OUT, is buffered and swings typically 0.35Vp-p with a 10k Ω and 6pF load. It can be AC-coupled to the input of a frequency synthesizer.

Master Bias

During normal operation, ENABLE should remain above V_{CC} - 0.4V. Pulling the ENABLE input low shuts off the master bias and reduces the circuit current to 2μ A. The master bias section includes a bandgap reference generator and a PTAT (Proportional To Absolute Temperature) current generator.

MAX2452

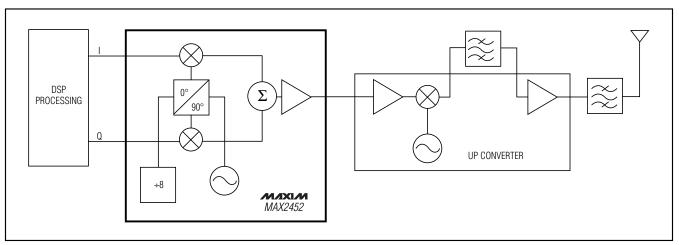


Figure 2. Typical Application Block Diagram

Applications Information

The MAX2452 quadrature modulator is designed to upconvert I and Q baseband signals to IF frequencies up to 80MHz. Figure 2 shows a typical application block diagram, in which the MAX2452 is used for the first upconversion in a dual-conversion transmitter.

Figure 3 shows an implementation of a resonant tank circuit. The inductor, two capacitors, and a dual varactor form the resonant circuit of the oscillator. The frequency range of the oscillator shown in Figure 3 is 130MHz to 160MHz. The inductor is directly connected across the local oscillator's tank ports so that it will not lock up the oscillator in a stable state during start-up. The two 33pF capacitors increase the Q of the resonant circuit and reduce the VCO gain. They can be changed to meet individual applications requirements. The oscillation frequency can be determined using the following formula:

$$f_{O} = \frac{1}{2\pi\sqrt{L_{EQ} C_{EQ}}}$$

where

$$C_{EQ} = \frac{1}{\frac{1}{C1} + \frac{1}{C2} + \frac{2}{C_{VAR}}} + C_{STRAY}$$

and

 $L_{EQ} = L + L_{STRAY}$

CSTRAY, LSTRAY: parasitic capacitance and inductance.

To alter the oscillation frequency range, change the inductance, the capacitance, or both. Make sure the Q of the resonant tank does not drop below 35.

$$Q = R_{EQ} \sqrt{\frac{C_{EQ}}{L_{EQ}}}$$

where $R_{EQ} = 10k\Omega$ (see Figure 1).

The oscillation frequency can be changed by altering the control voltage, VCTRL.

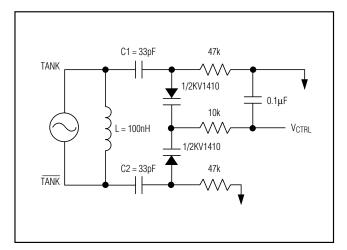
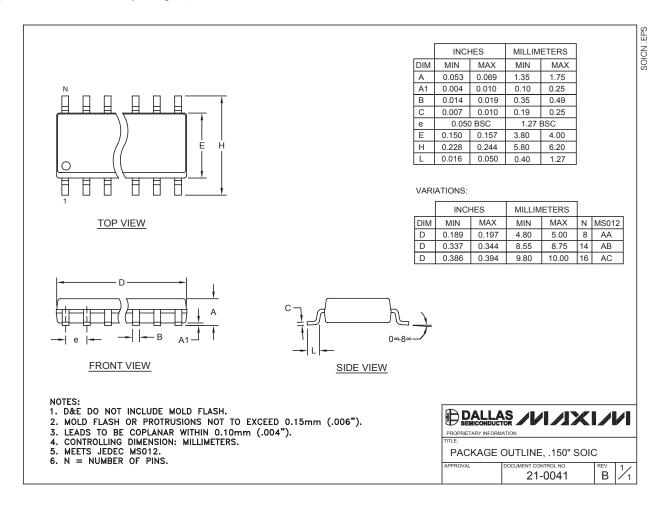



Figure 3. Typical Resonant Tank Circuit

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Revision History

Pages changed at Rev 2: 1, 2, 7

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2007 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.

____7