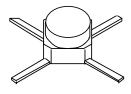
MSA-0736

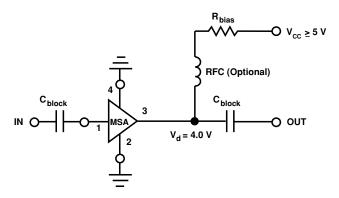
Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description


The MSA-0736 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Cascadable 50Ω Gain Block
- Low Operating Voltage: 4.0 V Typical V_d
- 3 dB Bandwidth: DC to 2.4 GHz
- 13.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- · Cost Effective Ceramic Microstrip Package

36 micro-X Package

Typical Biasing Configuration

MSA-0736 Absolute Maximum Ratings

Parameter	Absolute Maximum[1]				
Device Current	60 mA				
Power Dissipation ^[2,3]	275 mW				
RF Input Power	+13 dBm				
Junction Temperature	150°C				
Storage Temperature	−65 to 150°C				

Thermal Resistance ^[2,5] :	
$\theta_{\rm jc} = 155^{\circ}{ m C/W}$	

Notes:

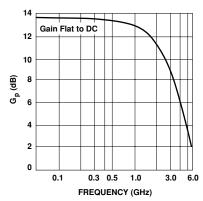
- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 6.5 mW/°C for $T_C > 157$ °C.
- 4. Storage above $+150^{\circ}\mathrm{C}$ may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Typ.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	12.5	13.5	14.5
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 1.3 GHz	dB		±0.6	±1.0
f _{3 dB}	3 dB Bandwidth		GHz		2.4	
VCWD	Input VSWR $f = 0.1 \text{ to } 2.5 \text{ GH}$				2.0:1	
VSWR	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1	
NF	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		4.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		5.5	
IP3	Third Order Intercept Point	f = 1.0 GHz	dBm		19.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		140	
V_{d}	Device Voltage		V	3.6	4.0	4.4
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-7.0	

Note

1. The recommended operating current range for this device is 15 to 40 mA. Typical performance as a function of current is on the following page.


Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0736-BLKG	100	Bulk		
MSA-0736-TR1G	1000	7" Reel		

Freq.	S ₁₁		S ₂₁		S ₁₂			S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.13	-3	13.5	4.71	175	-19.0	.112	2	.29	-7
0.2	.13	-6	13.4	4.69	170	-18.5	.119	3	.29	-12
0.4	.14	-13	13.4	4.68	160	-18.6	.118	6	.29	-24
0.6	.16	-20	13.3	4.64	150	-18.4	.120	7	.28	-35
0.8	.19	-29	13.2	4.60	140	-18.1	.125	8	.28	-47
1.0	.21	-40	12.9	4.42	129	-17.6	.131	10	.27	-58
1.5	.27	-71	12.2	4.07	104	-16.5	.149	10	.24	-83
2.0	.32	-107	11.5	3.74	79	-15.6	.165	7	.19	-103
2.5	.37	-134	10.3	3.26	62	-15.3	.173	5	.15	-113
3.0	.43	-160	8.8	2.76	44	-15.4	.171	0	.14	-120
3.5	.47	-179	7.5	2.37	27	-15.3	.173	-4	.16	-120
4.0	.49	167	6.2	2.05	12	-15.2	.168	-6	.21	-121
5.0	.51	134	4.0	1.59	-15	-15.2	.173	-11	.28	-135
6.0	.60	96	2.1	1.27	-42	-14.6	.185	-16	.29	-167

Typical Performance, $\rm T_A = 25^{\circ}C$

(unless otherwise noted)

 $\begin{array}{l} Figure \ 1. \ Typical \ Power \ Gain \ vs. \\ Frequency, \ I_d = 22 \ mA. \end{array}$

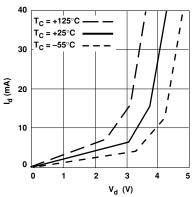


Figure 2. Device Current vs. Voltage.

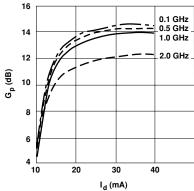


Figure 3. Power Gain vs. Current.

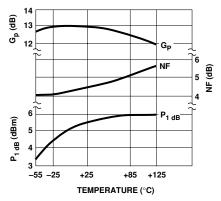


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, $f=1.0~\mathrm{GHz},$ $I_d=22~\mathrm{mA}.$

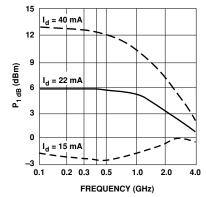


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

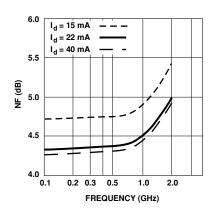
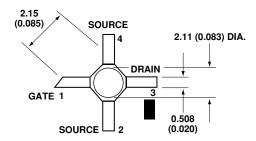
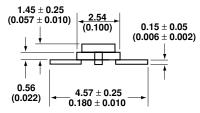




Figure 6. Noise Figure vs. Frequency.

36 micro-X Package Dimensions

Notes:

- 1. Dimensions are in millimeters (inches)
- 2. Tolerances: in .xxx = \pm 0.005 mm .xx = \pm 0.13

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

