

General Description

The MAX6495 evaluation kit (EV kit) demonstrates a high-voltage overvoltage protection circuit for automotive applications that must survive load dump and highvoltage transient conditions. This EV kit is a fully assembled and tested surface-mount board.

This EV kit supports high output currents of up to 5A, operates at voltages up to 72V, and withstands temperatures ranging from -40°C to +105°C. Two alternate voltage inputs implement two different schemes for reverse-battery protection.

Features

- ♦ 5.5V to 72V Wide Supply Voltage Range
- ◆ Up to 5A Output Current Capacity
- ♦ Selectable Overvoltage Mode and Overvoltage **Limiter Mode**
- **♦ Adjustable Overvoltage Threshold**
- **♦ 100V Reverse-Battery Protection**

Ordering Information

PART	TEMP RANGE	IC PACKAGE
MAX6495EVKIT	-40°C to +105°C	6 TDFN-EP*

^{*}EP = Exposed paddle.

Component List

DESIGNATION	QTY	DESCRIPTION	
C1, C7	2	22μF, 100V aluminum electrolytic capacitors Vishay 222215369229	
C2, C8-C12	0	Not installed, capacitors	
C3	1	Not installed, capacitor (1206)	
C6	1	0.1µF, 100V X7R ceramic capacitor TDK C3216X7R2A104K or AVX 12061C104KAT2A	
C13	1	Not installed, electrolytic capacitor	
D1	1	8A/100V Schottky diode International Rectifier 8TQ100S or ST Microelectronics STPS8H100G	
D2	1	60V, 600W TVS diode Diodes SMBJ54A or Fairchild SMBJ54A	
D3	1	18V zener diode Central Semi CMPZ5248B or Diodes MMBZ5248BT	
D4	1	Not installed, optional TVS diode (DO-15)	

DESIGNATION	QTY	DESCRIPTION
J1	0	Not installed, 2-pin header
J2, J3, J4	3	3-pin headers
M1	1	100V, 33A n-channel MOSFET International Rectifier IRF540NS or Fairchild FQB33N10
M2	1	100V, 23A p-channel MOSFET International Rectifier IRF9540NS or Fairchild FQB22P10
R1	1	649kΩ ±1% resistor (0805)
R2	1	49.9kΩ ±1% resistor (0805)
R4	1	Not installed, resistor (0805)
R5	1	100kΩ ±1% resistor (0805)
R6	1	2.2MΩ ±1% resistor
U1	1	MAX6495ATT (6-pin TDFN)
_	1	PCB: MAX6495EVKIT

Quick Start

The MAX6495 EV kit is fully assembled and tested. Follow these steps to verify operation. Caution: Do not turn on the power supply until all connections are completed.

- 1) Connect a DC power supply (0 to 20V or above, 5A or depending on load) to VIN1 and GND.
- 2) Connect a voltmeter or oscilloscope and a load (if desired) to OUT and GND.
- 3) Make sure the J2 shunt connects pins 1-2 (overvoltage-protect mode). The J4 shunt should connect pins 1-2.
- 4) Turn on the power supply and increase the input voltage. The output turns on when the input voltage reaches 5.5V. Increase the supply voltage further; the output turns off when the input voltage reaches 17V.
- 5) The above steps can be followed for a power supply connected to VIN2 or VIN3. The thresholds for turn on and turn off for inputs VIN2 and VIN3 are higher due to the voltage drop across the reverse-battery protection.

Detailed Description

The MAX6495 EV kit demonstrates a high-voltage overvoltage protection circuit for automotive applications that must survive load dump and high-voltage transient conditions. This EV kit can be configured in overvoltage mode or overvoltage limiter mode by setting jumper J2 (see Table 1 for the jumper settings), and can supply up to 5A of output current.

The MAX6495 EV kit has three positive power-supply inputs: VIN1, VIN2, and VIN3. Inputs VIN2 and VIN3 have diode-based and p-channel MOSFET-based reverse-battery protections, respectively, and VIN1 bypasses all reverse-battery protections.

Overvoltage Mode

In overvoltage mode, the MAX6495 monitors the input voltage and turns off the series-pass n-channel MOSFET (M1) when the input voltage exceeds the programmed threshold voltage. As soon as the input voltage drops below the overvoltage threshold, the charge pump of the MAX6495 fully enhances MOSFET M1 to turn the output back on. The voltage-divider formed by R1 and R2 sets the threshold voltage. The resistors provided in the MAX6495 EV kit set the threshold at 17V. If inputs VIN2 or VIN3 are used, this threshold will be higher due to the voltage drop in D1 or M2.

The overvoltage threshold can be adjusted by varying R1 or R2 using the equation below:

$$R1 = \left(\frac{V_{OV}}{1.24} - 1\right) \times R2$$

where Voy is the desired overvoltage threshold. To maintain threshold accuracy, R2 must be less than 250k Ω . Since the EV kit ships with R2 set at 49.9k Ω , an easy way to change the threshold is to change R1 only, using the formula above.

Overvoltage Limiter Mode

In overvoltage limiter mode, the MAX6495 monitors the output voltage instead of the input voltage. The output voltage is sensed through the same voltage-divider formed by R1 and R2, so the equation given for overvoltage mode also applies to the threshold voltage in overvoltage limiter mode. During an input overvoltage

Component Suppliers

SUPPLIER	PHONE	FAX	WEBSITE
AVX Corp.	602-678-0384	602-678-0385	www.avx.com
Central Semiconductor Corp.	516-435-1110	516-435-1824	www.centralsemi.com
Diodes Inc.	805-446-4800	805-446-4850	www.diodes.com
Electronic Connector Service, Inc.	714-895-6351	714-894-1858	www.ecsconn.com
EPCOS	732-906-4300	732-603-5935	www.epcos.com
International Rectifier	310-322-3331	310-322-3332	www.irf.com
Murata Mfg. Co., Ltd.	770-436-1300	770-436-3030	www.murata.com
STMicroelectronics	408-452-8585	408-452-1549	www.st.com
TDK Corp.	847-390-4373	847-390-4428	www.component.tdk.com
Vishay	402-563-6866	402-563-6296	www.vishay.com

Note: Indicate that you are using the MAX6495 when contacting these component suppliers.

transient in this mode, the MOSFET switches off until the output voltage falls to 95% of the threshold voltage, and then the MOSFET switches back on. This cycle repeats, generating a sawtooth waveform on the output.

The minimum output voltage in overvoltage limiter mode depends on load current, output capacitance, and the MOSFET's switching period. The MAX6495 EV kit comes with one 22µF capacitor at the output to supply the load during the time when the MOSFET is off. Connect the optional electrolytic capacitor C13 (150µF, 100V) to support load currents higher than 0.5A when the EV kit operates in overvoltage limiter mode.

Add capacitor C3 on the gate of MOSFET M1 to decrease the frequency of the sawtooth waveform. This process helps limit the device's power dissipation.

Jumper Selection

To filter fast transients that may be present at the input from reaching the MAX6495, place a small resistor, R4, $(10\Omega, \text{ for example})$ on the board, and cut jumper J1.

Three-pin jumper J2 selects between overvoltage mode and overvoltage limiter mode; do not leave this jumper unconnected. Three-pin jumper J3 controls the gate drive of p-channel MOSFET M3 used as a reverse-battery protection. Use J3 to disconnect resistor R5 when M3 is not used to avoid supply leakage through R5. Three-pin jumper J4 controls the SHDN pin of the MAX6495 and can enable or disable the MOSFET M1 enhancement. Table 1 lists the jumper options.

Table 1. Jumper Function

<u>-</u>				
JUMPER	SHUNT POSITION AND FUNCTION			
	1-2	2-3		
J1	Shorted: RC input filter disabled*			
J2	Overvoltage mode*	Overvoltage limiter mode		
J3	M2 gate drive is disabled*	M2 gate drive is enabled		
J4	U1 is enabled*	U1 is disabled		

^{*}Default configuration.

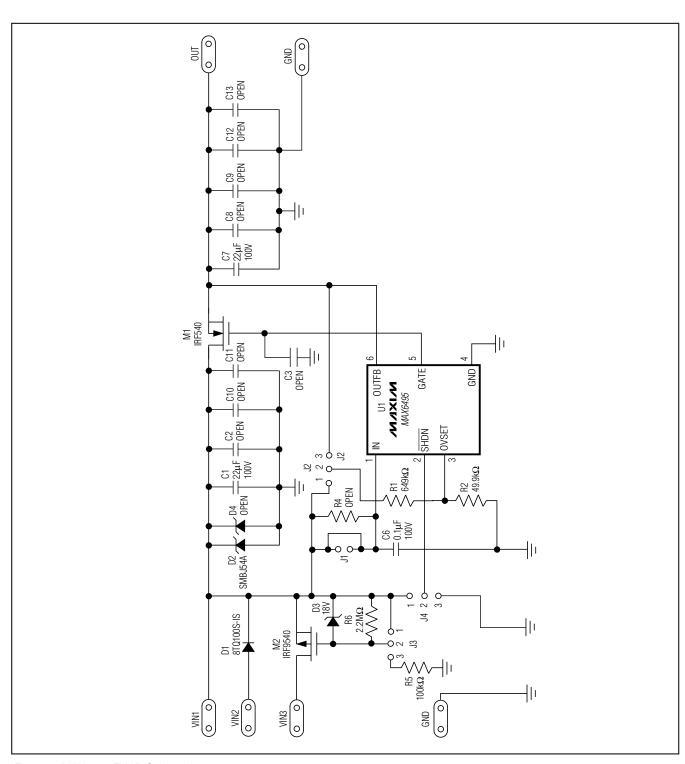


Figure 1. MAX6495 EV Kit Schematic

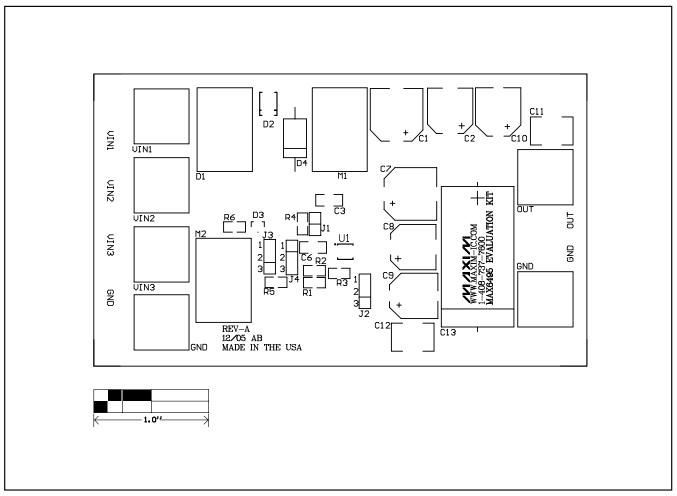


Figure 2. MAX6495 EV Kit Component Placement Guide—Component Side

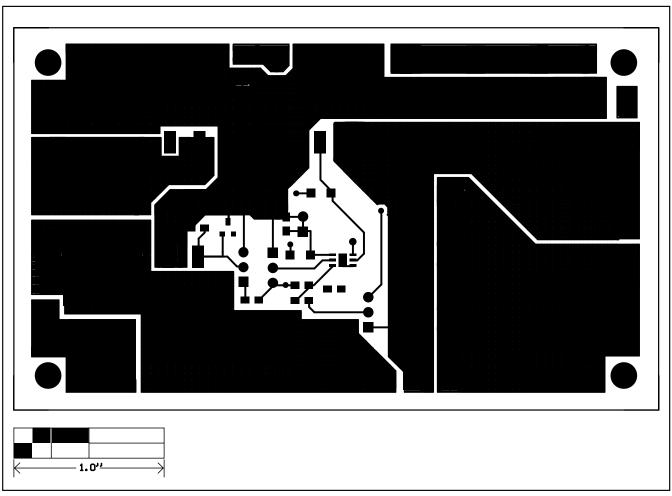


Figure 3. MAX6495 EV Kit PCB Layout—Component Side

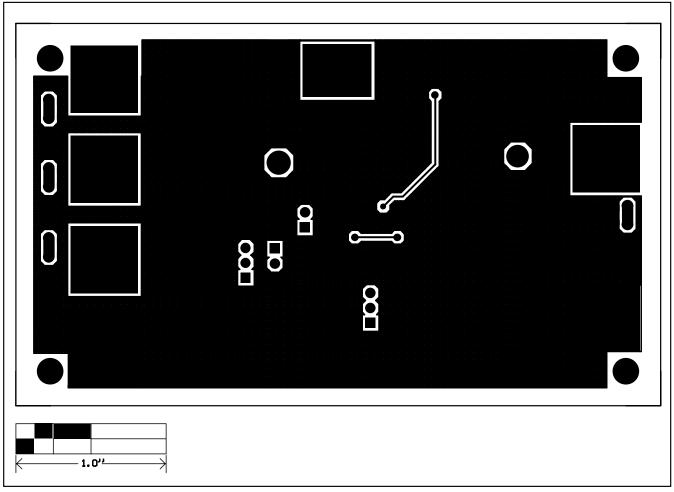


Figure 4. MAX6495 EV Kit PCB Layout—Solder Side

_Revision History

Pages changed at Rev 1: 1-7

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.