Dual bus switch with level shifting

Rev. 8 — 1 May 2012

Product data sheet

1. General description

The CBTD3306 dual FET bus switch features independent line switches. Each switch is disabled when the associated output enable $(n\overline{OE})$ input is HIGH.

The CBTD3306 is characterized for operation from -40 °C to +85 °C.

2. Features and benefits

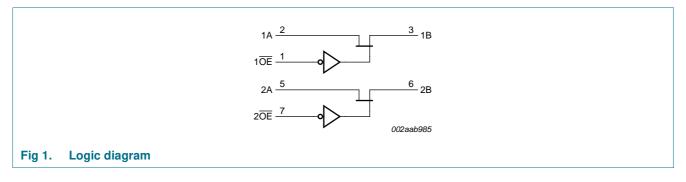
- Designed to be used in 5 V to 3.3 V level shifting applications with internal diode
- 5 Ω switch connection between two ports
- TTL-compatible input levels
- Multiple package options
- Latch-up protection exceeds 100 mA per JESD78B
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - CDM JESD22-C101E exceeds 1000 V

3. Ordering information

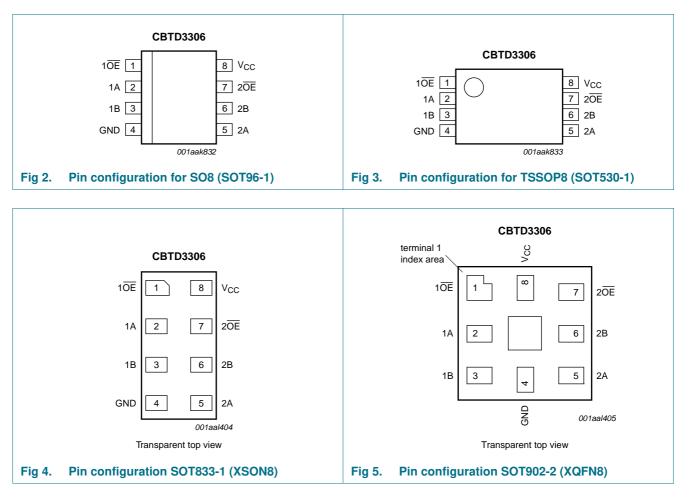
Table 1.Ordering information

Type number	Package						
	Name	Description	Version				
CBTD3306D	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1				
CBTD3306PW	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 4.4 mm	SOT530-1				
CBTD3306GT	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1				
CBTD3306GM	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 \times 1.6 \times 0.5 mm	SOT902-2				

4. Marking


Table 2. Marking codes

Type number	Marking code
CBTD3306D	CBD3306
CBTD3306PW	D306
CBTD3306GT	W06
CBTD3306GM	W06


Dual bus switch with level shifting

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
1 <u>0E</u> , 2 <u>0E</u>	1, 7	output enable input
1A, 2A	2, 5	data input/output (A port)
1B, 2B	3, 6	data input/output (B port)
GND	4	ground (0 V)
V _{CC}	8	positive supply voltage

7. Functional description

Table 4.	Function selection ^[1]	
Input nOE		Input/output
nOE		nA, nB
L		nA = nB
Н		Z

[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

Limiting values 8.

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1] $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		[2] -0.5	+7.0	V
I _{SW}	switch current		-	128	mA
I _{IK}	input clamping current	$V_{I/O} = 0 V$	-50	-	mA
T _{stg}	storage temperature		-65	+150	°C

[1] Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Section 9. is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. [2]

Recommended operating conditions 9.

Table 6. **Operating conditions**

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

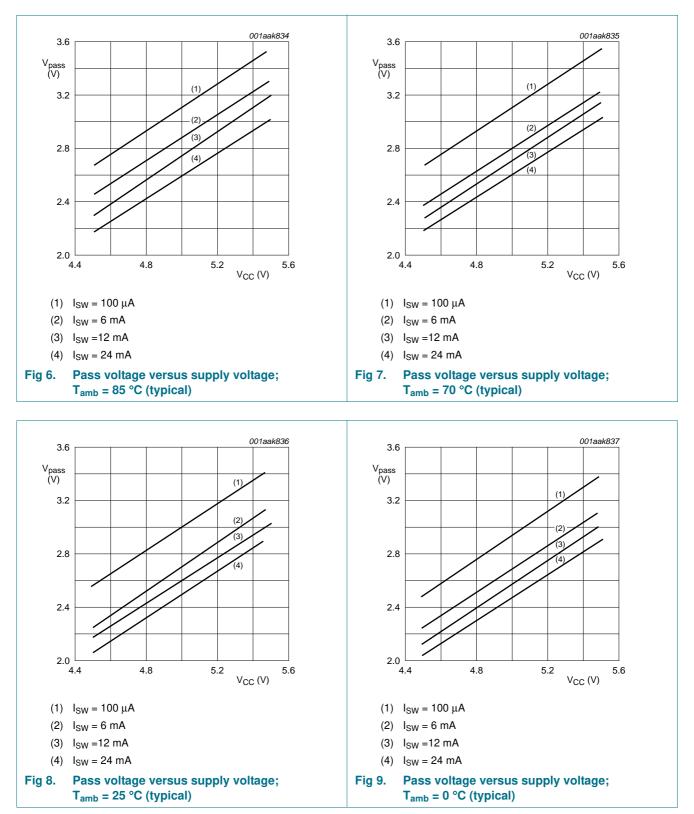
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		4.5	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
T _{amb}	ambient temperature	operating in free air	-40	-	+85	°C

3 of 17

10. Static characteristics

Table 7.Static characteristics

Voltages are referenced to GND (ground = 0 V).

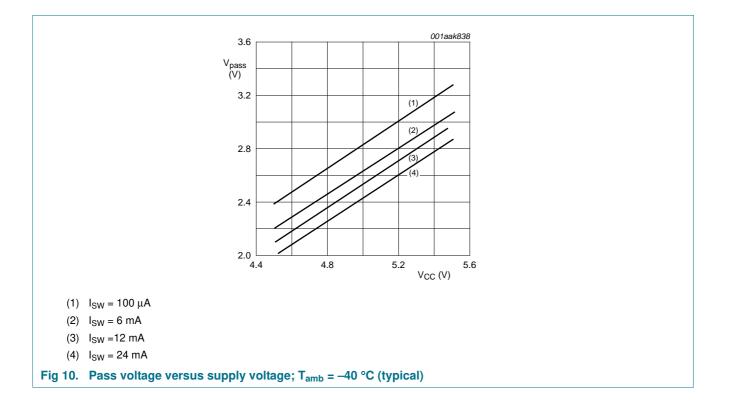

Symbol	Parameter	Conditions		T _{amb} =	= –40 °C to +	⊦85 °C	Unit
				Min	Typ[1]	Max	
V _{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; I_I = -18 \text{ mA}$, in the second s	-	-	-1.2	V
l _l	input leakage current	V_{CC} = 5.5 V; V_{I} = GND or 5.5 V		-	-	±1	μA
I _{CC}	supply current	V_{CC} = 5.5 V; I _{SW} = 0 mA; V _I = V _{CC} or GND		-	-	1.5	mA
V _{pass}	pass voltage	see Figure 6 to Figure 10		-	-	-	V
ΔI_{CC}	additional supply current	per input pin; V_{CC} = 5.5 V; one input at 3.4 V, other inputs at V_{CC} or GND	[2]	-	-	2.5	mA
CI	input capacitance	control pin; $V_1 = 3 V \text{ or } 0 V$		-	3.2	-	pF
C _{io(off)}	off-state input/output capacitance	port off; $V_I = 3 V \text{ or } 0 V; n\overline{OE} = V_{CC}$		-	6.5	-	pF
R _{ON}	ON resistance	$V_{CC} = 4.5 \text{ V}; \text{ V}_{I} = 0 \text{ V}; \text{ I}_{I} = 64 \text{ mA}$	[3]	-	3.6	5	Ω
		$V_{CC} = 4.5 \text{ V}; V_I = 0 \text{ V}; I_I = 30 \text{ mA}$	[3]	-	3.6	5	Ω
		$V_{CC} = 4.5 \text{ V}; \text{ V}_{I} = 2.4 \text{ V}; \text{ I}_{I} = 15 \text{ mA}$	<u>[3]</u>	-	17	35	Ω

[1] All typical values are at V_{CC} = 5 V, T_{amb} = 25 °C.

[2] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[3] Measured by the voltage drop between the nA and the nB terminals at the indicated current through the switch. ON resistance is determined by the lowest voltage of the two (nA or nB) terminals.

Dual bus switch with level shifting


10.1 Typical pass voltage graphs

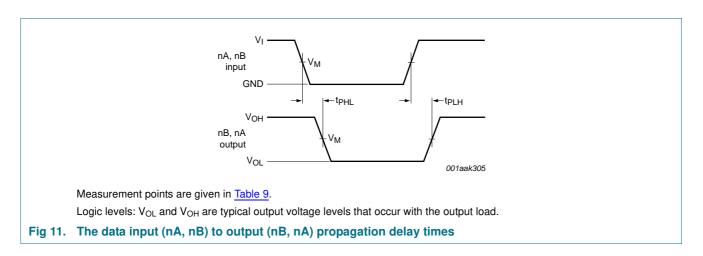
CBTD3306 Product data sheet

NXP Semiconductors

CBTD3306

Dual bus switch with level shifting

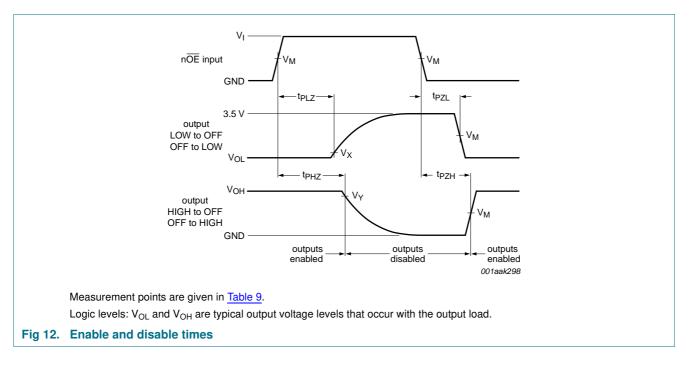
11. Dynamic characteristics


Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 13.

Symbol	Parameter	Conditions		T _{amb} = -40 °C to +85 °C			Unit
				Min	Тур	Max	
t _{pd} propagation delay		nA, nB to nB, nA; see Figure 11	[1][2]	-	-	0.25	ns
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$					
t _{en}	enable time	nOE to nA or nB; see Figure 12	[2]	1.0	-	5.4	ns
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$					
t _{dis}	disable time	nOE to nA or nB; see Figure 12	[2]	1.0	-	4.9	ns
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$					

[1] The propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).


12. Waveforms

NXP Semiconductors

CBTD3306

Dual bus switch with level shifting

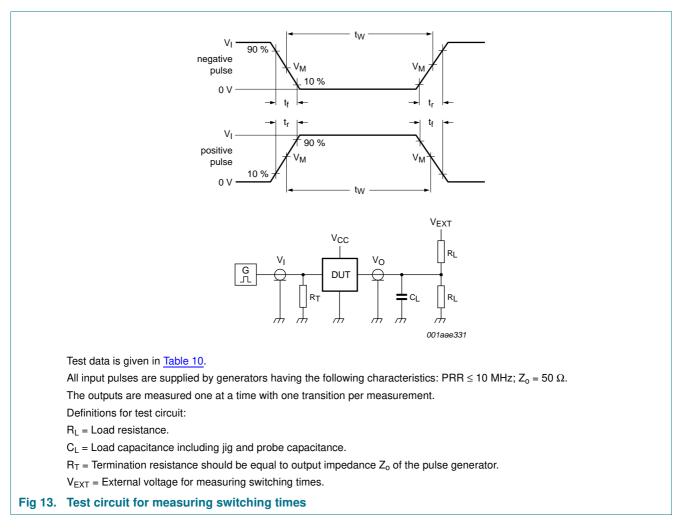


Table 9. Measurement points

Supply voltage	Input		Output		
V _{CC}	VI	V _M	V _M	V _X	V _Y
$V_{CC}=5.0~V\pm0.5~V$	GND to 3.0 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V

Dual bus switch with level shifting

13. Test information

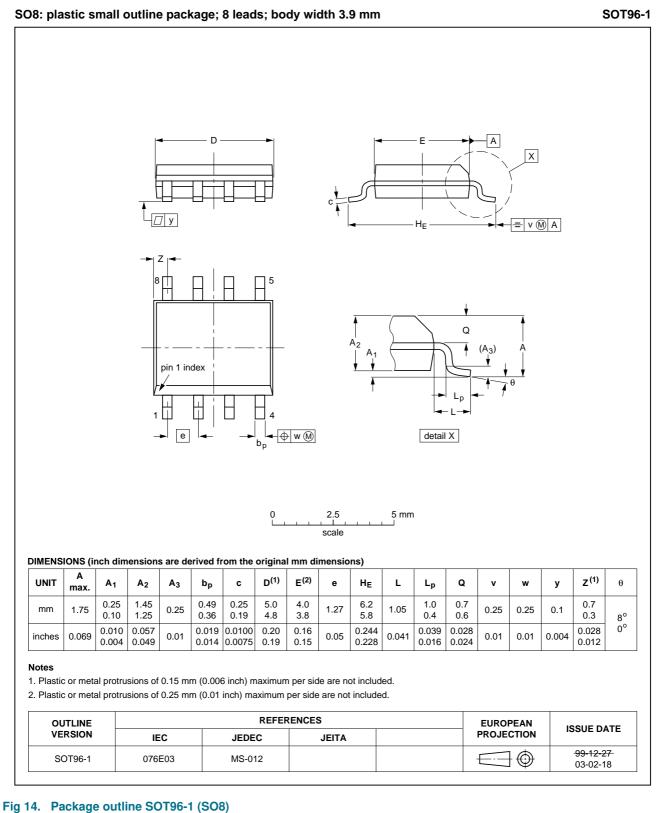


Table 10. Test data

Supply voltage	Input		Load		V _{EXT}		
	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
$V_{CC}=5.0~V\pm0.5~V$	GND to 3.0 V	≤ 2.5 ns	50 pF	500 Ω	open	7.0 V	open

Dual bus switch with level shifting

14. Package outline

Dual bus switch with level shifting

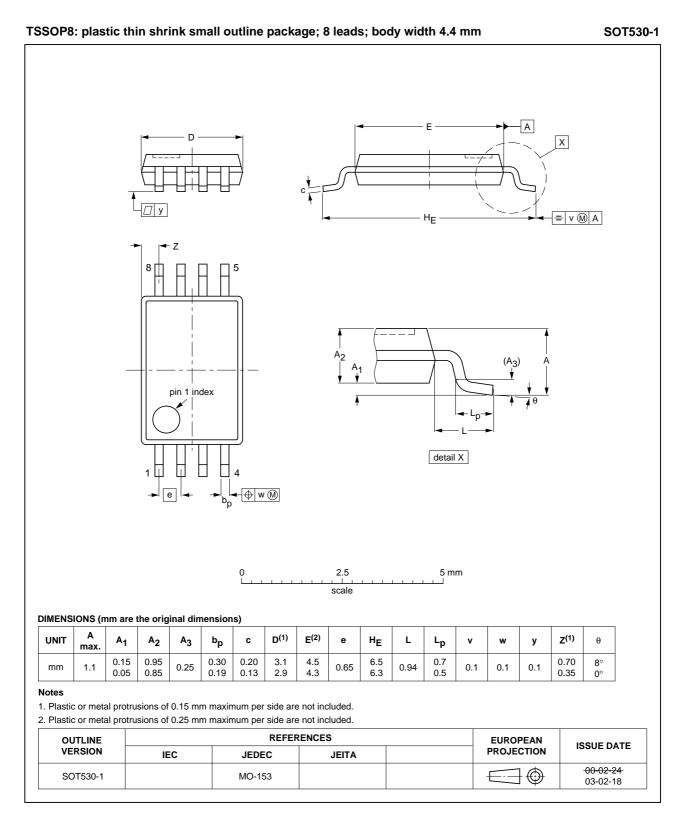
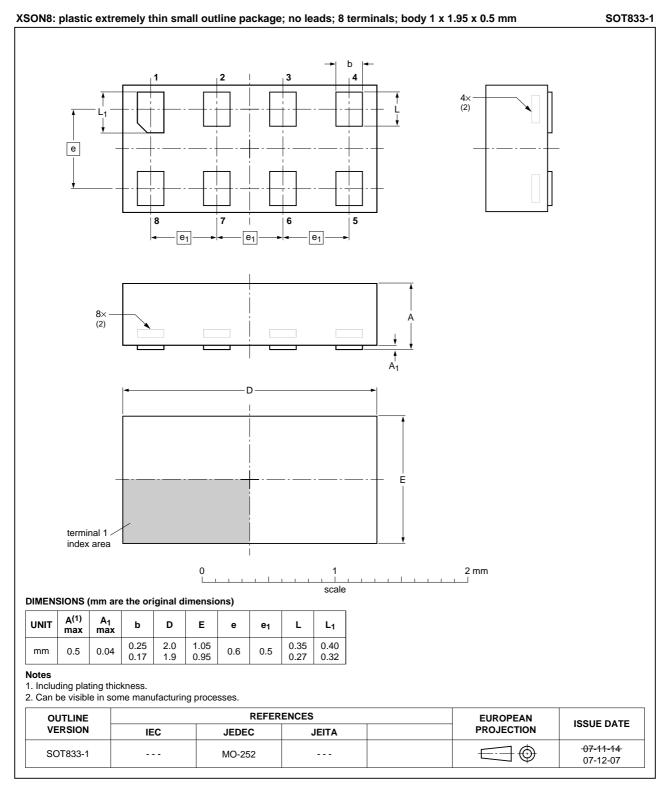



Fig 15. Package outline SOT530-1 (TSSOP8)

All information provided in this document is subject to legal disclaimers.

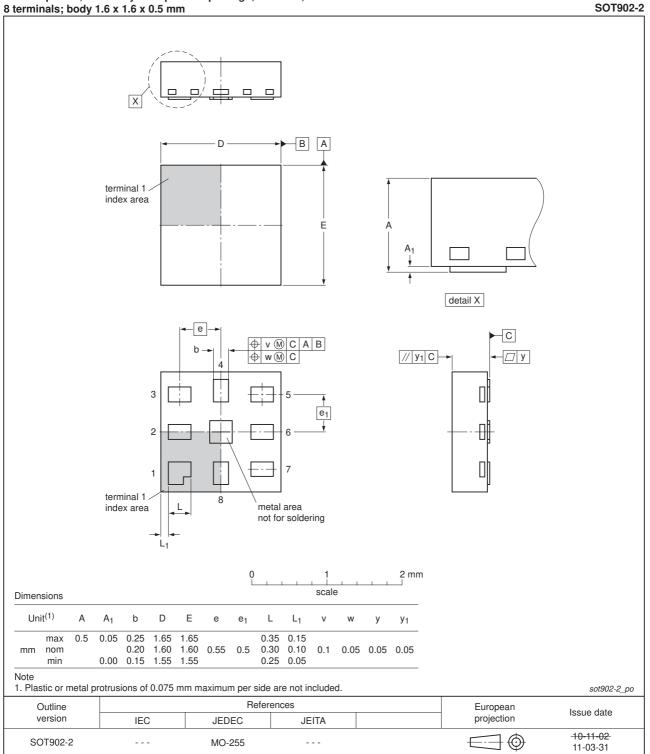

Dual bus switch with level shifting

Fig 16. Package outline SOT833-1 (XSON8)

CBTD3306 Product data sheet

Dual bus switch with level shifting

XQFN8: plastic, extremely thin quad flat package; no leads;

Fig 17. Package outline SOT902-2 (XQFN8)

All information provided in this document is subject to legal disclaimers.

Dual bus switch with level shifting

15. Abbreviations

AcronymDescriptionCDMCharged Device ModelESDElectroStatic DischargeFETField Effect TransistorHBMHuman Body ModelPRRPulse Rate RepetitionTTLTransistor-Transistor Logic	Table 11.	Abbreviations
ESDElectroStatic DischargeFETField Effect TransistorHBMHuman Body ModelPRRPulse Rate Repetition	Acronym	Description
FETField Effect TransistorHBMHuman Body ModelPRRPulse Rate Repetition	CDM	Charged Device Model
HBM Human Body Model PRR Pulse Rate Repetition	ESD	ElectroStatic Discharge
PRR Pulse Rate Repetition	FET	Field Effect Transistor
	HBM	Human Body Model
TTL Transistor-Transistor Logic	PRR	Pulse Rate Repetition
	TTL	Transistor-Transistor Logic

16. Revision history

Table 12. Re	vision history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
CBTD3306 v.8	3 20120501	Product data sheet	-	CBTD3306 v.7
Modifications:	 For type num 	ber CBTD3306GM the SOT co	de has changed to SO	Т902-2.
CBTD3306 v.7	20120103	Product data sheet	-	CBTD3306 v.6
Modifications:	Marking code	e for type number CBTD3306D	changed.	
CBTD3306 v.6	6 20111121	Product data sheet	-	CBTD3306 v.5
Modifications:	 Legal pages 	updated.		
CBTD3306 v.5	5 20110428	Product data sheet	-	CBTD3306 v.4
CBTD3306 v.4	20100325	Product data sheet	-	CBTD3306 v.3
CBTD3306 v.3	3 20100223	Product data sheet	-	CBTD3306 v.2
CBTD3306 v.2	2 20091015	Product data sheet	-	CBTD3306 v.1
CBTD3306 v.1	20011108	Product data	-	-

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Dual bus switch with level shifting

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Dual bus switch with level shifting

19. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Marking 1
5	Functional diagram 2
6	Pinning information 2
6.1	Pinning 2
6.2	Pin description 3
7	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 4
10.1	Typical pass voltage graphs 5
11	Dynamic characteristics 7
12	Waveforms 7
13	Test information 9
14	Package outline 10
15	Abbreviations 14
16	Revision history 14
17	Legal information 15
17.1	Data sheet status 15
17.2	Definitions
17.3	Disclaimers
17.4	Trademarks 16
18	Contact information 16
19	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 May 2012 Document identifier: CBTD3306