

N-Channel 100 V (D-S) MOSFET

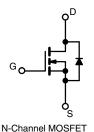
PowerPAK® SC-75-6L Single

Bottom View

Marking code: AJ

Top View

FEATURES


- TrenchFET® power MOSFET
- Thermally enhanced PowerPAK® SC-75 package
 - Small footprint area
 - Low on-resistance
- 100 % R_a and UIS tested
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- DC/DC converters
- Full-bridge converters
- For power bricks and POL power

ROHS COMPLIANT HALOGEN FREE

ORDERING INFORMATION	
Package	PowerPAK SC-75
Lead (Pb)-free and halogen-free	SiB456DK-T1-GE3

PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-source voltage		V _{DS}	100	V		
Gate-source voltage		V _{GS}	± 20	V		
	T _C = 25 °C		6.3			
Continuous drain surrent (T. 150 °C)	T _C = 70 °C		5			
Continuous drain current (T _J = 150 °C)	T _A = 25 °C	I _D	2.7 b, c			
	T _A = 70 °C		2.2 b, c	^		
Pulsed drain current (t = 300 μs)	•	I _{DM}	7	A		
Continuous source-drain diode current	T _C = 25 °C		6.3			
	T _A = 25 °C	I _S	2 b, c			
Single pulse avalanche current	0.1 mall	I _{AS}	2.4			
Single pulse avalanche energy	L = 0.1 mH	E _{AS}	0.29	mJ		
	T _C = 25 °C		13			
Maximum navver dissination	T _C = 70 °C		8.4	□ w		
Maximum power dissipation	T _A = 25 °C	P _D	2.4 b, c	VV		
	T _A = 70 °C		1.6 ^{b, c}			
Operating junction and storage temperature rai	nge	т т	-55 to +150	°C		
Soldering recommendations (peak temperature	e) ^{d, e}	T _J , T _{stg}	260	7		

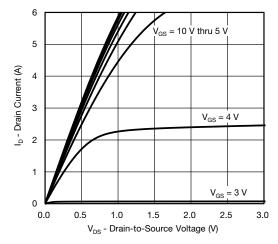
THERMAL RESISTANCE RATINGS								
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT			
Maximum junction-to-ambient b, f	t ≤ 5 s	R _{thJA}	41	51	°C/W			
Maximum junction-to-case (drain)	Steady state	R_{thJC}	7.5	9.5	C/VV			

Notes

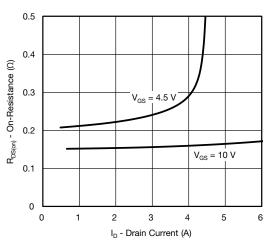
- a. $T_C = 25$ °C
- b. Surface mounted on 1" x 1" FR4 board
- c. t = 5 s
- 6. 1–33
 6. See solder profile (www.vishay.com/doc?73257). The PowerPAK SC-75 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- f. Maximum under steady state conditions is 105 °C/W

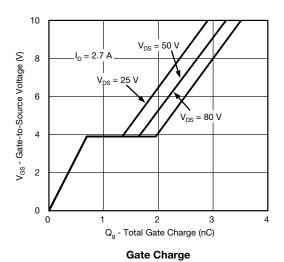
Vishay Siliconix

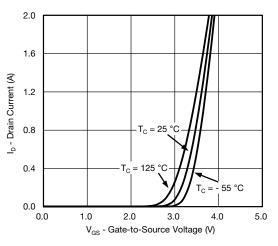
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static				•	•	
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	L 050 A	-	54	-	
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	-	-4.1	-	mV/°C
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.6	-	3	V
Gate-source leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	-	-	± 100	nA
7		V _{DS} = 100 V, V _{GS} = 0 V	-	-	1	μΑ
Zero gate voltage drain current	I _{DSS}	V _{DS} = 100 V, V _{GS} = 0 V, T _J = 55 °C	-	-	10	
On-state drain current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	6	-	-	Α
Duning and the second of the s	Б	V _{GS} = 10 V, I _D = 1.9 A	-	0.153	0.185	Ω
Drain-source on-state resistance a	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 1.5 A	-	0.220	0.310	
Forward transconductance a	9 _{fs}	V _{DS} = 10 V, I _D = 1.9 A	-	3.7	-	S
Dynamic ^b					•	
Input capacitance	C _{iss}		-	130	-	
Output capacitance	C _{oss}	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	54	-	pF
Reverse transfer capacitance	C _{rss}		-	10	-	
-		$V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 2.7 \text{ A}$	-	3.3	5	
Total gate charge	Qg		-	1.8	2.7	
Gate-source charge	Q _{qs}	$V_{DS} = 50 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 2.7 \text{ A}$	-	0.7	-	nC
Gate-drain charge	Q _{qd}		-	1	-	
Gate resistance	R_g	f = 1 MHz	1.3	6.5	13	Ω
Turn-on delay time	t _{d(on)}		-	15	30	
Rise time	t _r	$V_{DD} = 50 \text{ V}, R_L = 23 \Omega$	-	45	90	
Turn-off delay time	t _{d(off)}	$I_D\cong 2.2$ A, $V_{GEN}=4.5$ V, $R_g=1$ Ω	-	11	20	
Fall time	t _f		-	13	25	
Turn-on delay time	t _{d(on)}		-	5	10	ns
Rise time	t _r	$V_{DD} = 50 \text{ V}, R_L = 23 \Omega$	-	11	20	
Turn-off delay time	t _{d(off)}	$I_D \cong 2.2 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	-	10	20	
Fall time	t _f		-	10	20	
Drain-Source Body Diode Characterist	ics			•	•	
Continuous source-drain diode current	Is	T _C = 25 °C	-	-	6.3	^
Pulse diode forward current	I _{SM}		-	-	7	Α
Body diode voltage	V _{SD}	$I_S = 2.2 \text{ A}, V_{GS} = 0 \text{ V}$	-	0.9	1.2	V
Body diode reverse recovery time	t _{rr}		-	25	50	ns
Body diode reverse recovery charge	Q _{rr}	$I_F = 2.2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	20	40	nC
Reverse recovery fall time	t _a	$T_{J} = 25 ^{\circ}\text{C}$	-	18	-	
			1	1	1	ns


Notes

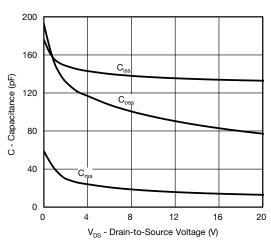
- a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %
- b. Guaranteed by design, not subject to production testing


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

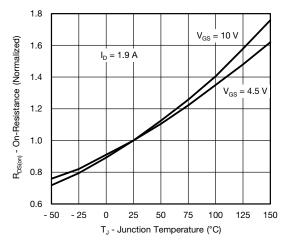

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



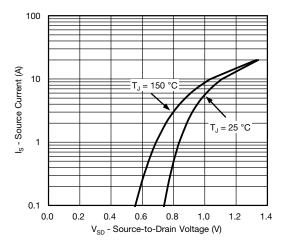
Output Characteristics

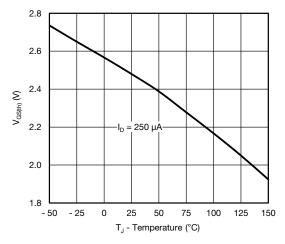


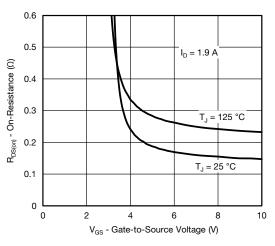
On-Resistance vs. Drain Current and Gate Voltage

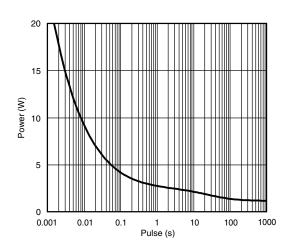


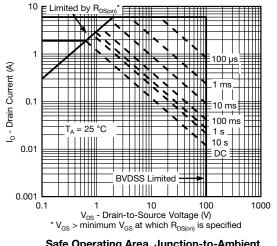
Transfer Characteristics


Capacitance

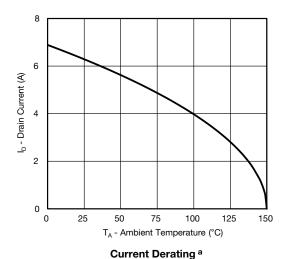

On-Resistance vs. Junction Temperature

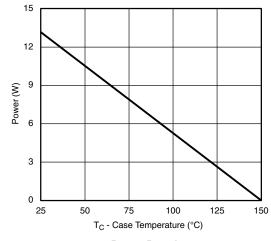

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


Threshold Voltage

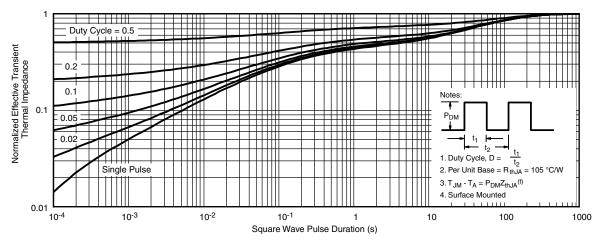
On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power, Junction-to-Ambient

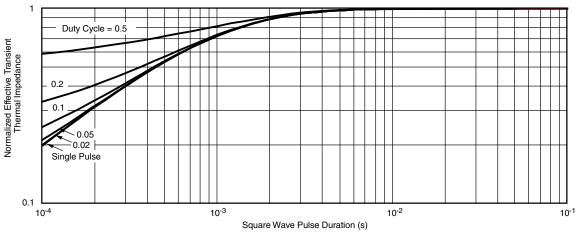


Safe Operating Area, Junction-to-Ambient

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

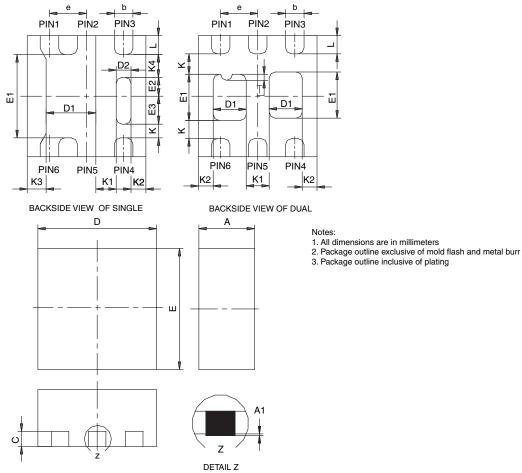


Power Derating


a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

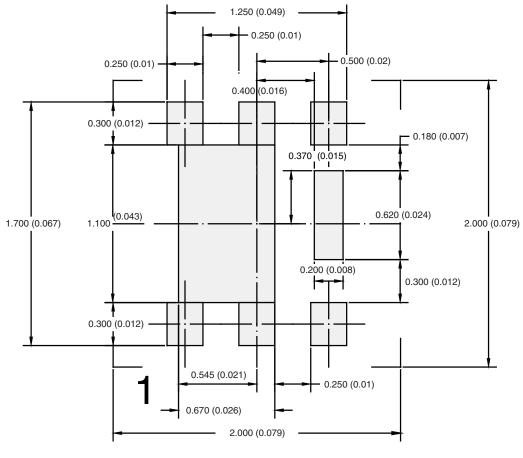
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62715.

Vishay Siliconix

PowerPAK® SC75-6L

	SINGLE PAD							DUAL PAD					
DIM	MILLIMETERS			INCHES			MILLIMETERS			INCHES			
	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
Α	0.675	0.75	0.80	0.027	0.030	0.032	0.675	0.75	0.80	0.027	0.030	0.032	
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002	
b	0.18	0.25	0.33	0.007	0.010	0.013	0.18	0.25	0.33	0.007	0.010	0.013	
С	0.15	0.20	0.25	0.006	0.008	0.010	0.15	0.20	0.25	0.006	0.008	0.010	
D	1.53	1.60	1.70	0.060	0.063	0.067	1.53	1.60	1.70	0.060	0.063	0.067	
D1	0.57	0.67	0.77	0.022	0.026	0.030	0.34	0.44	0.54	0.013	0.017	0.021	
D2	0.10	0.20	0.30	0.004	0.008	0.012							
Е	1.53	1.60	1.70	0.060	0.063	0.067	1.53	1.60	1.70	0.060	0.063	0.067	
E1	1.00	1.10	1.20	0.039	0.043	0.047	0.51	0.61	0.71	0.020	0.024	0.028	
E2	0.20	0.25	0.30	0.008	0.010	0.012							
E3	0.32	0.37	0.42	0.013	0.015	0.017							
е		0.50 BSC	C 0.020 BSC		0.50 BSC			0.020 BSC					
K	0.180 TYP				0.007 TYP			0.245 TYP			0.010 TYP		
K1	0.275 TYP			0.011 TYP			0.320 TYP			0.013 TYP			
K2	0.200 TYP			0.008 TYP			0.200 BSC			0.008 TYP			
К3	0.255 TYP		0.010 TYP										
K4	0.300 TYP		0.012 TYP										
L	0.15	0.25	0.35	0.006	0.010	0.014	0.15	0.25	0.35	0.006	0.010	0.014	
Т							0.03	0.08	0.13	0.001	0.003	0.005	
	07404 Da	0. 00 A	- 07				0.03	0.08	0.13	0.001	0.003	L	

ECN: C-07431 - Rev. C, 06-Aug-07


DWG: 5935

Document Number: 73000 06-Aug-07

www.vishay.com

RECOMMENDED PAD LAYOUT FOR PowerPAK® SC75-6L Single

Dimensions in mm/(Inches)

Return to Index

ATTLICATION NO

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.