Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD75P0016

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD75P0016 replaces the μ PD750008's internal mask ROM with a one-time PROM and features expanded ROM capacity.

Because the μ PD75P0016 supports programming by users, it is suitable for use in prototype testing for system development using the μ PD750004, 750006, or 750008 products, and for use in small-lot production.

Detailed information about product features and specifications can be found in the following document μ PD750008 User's Manual: U10740E

FEATURES

- Compatible with μPD750008
- · Memory capacity:

• PROM : 16384×8 bits • RAM : 512×4 bits

- Can operate in same power supply voltage as the mask ROM version μ PD750008
 - $V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$
- ★ Supports QTOP™ microcontroller

Remark QTOP Microcontroller is the general name for a total support service that includes imprinting, marking, screening, and verifying one-time PROM single-chip microcontrollers offered by NEC Electronics.

ORDERING INFORMATION

	Part number	Package	ROM (× 8 bits)	
	μPD75P0016CU	42-pin plastic shrink DIP (600 mil, 1.778-mm pitch)	16384	_
*	μPD75P0016CU-A	42-pin plastic shrink DIP (600 mil, 1.778-mm pitch)	16384	
	μ PD75P0016GB-3BS-MTX	44-pin plastic QFP (10 × 10 mm, 0.8-mm pitch)	16384	
*	μPD75P0016GB-3BS-MTX-A	44-pin plastic QFP (10 × 10 mm, 0.8-mm pitch)	16384	

Caution On-chip pull-up resistors by mask option cannot be provided.

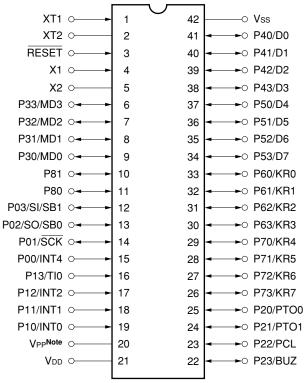
Remark Products with "-A" at the end of the part number are lead-free products.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

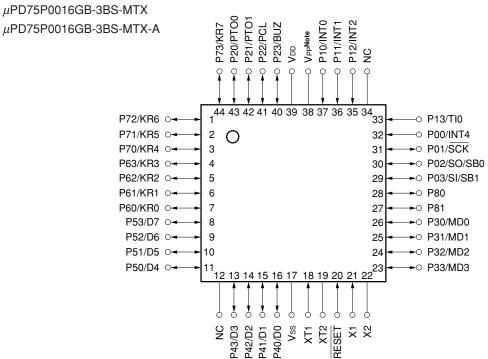
FUNCTION LIST

Ite	em			Function	
Instruction execution time			 0.95, 1.91, 3.81, 15.3 μs (main system clock: at 4.19 MHz operation) 0.67, 1.33, 2.67, 10.7 μs (main system clock: at 6.0 MHz operation) 122 μs (subsystem clock: at 32.768 kHz operation) 		
On-chip memory		PROM	1638	84 × 8 bits	
		RAM	512	× 4 bits	
General register				4-bit operation: 8×4 banks 8-bit operation: 4×4 banks	
I/O port	CMOS input	t	8	Connection of on-chip pull-up resistor specifiable by software: 7	
	CMOS I/O		18	Direct LED drive capability Connection of on-chip pull-up resistor specifiable by software: 18	
	N-ch open d	Irain I/O	8	Direct LED drive capability 13 V withstand voltage	
	Total		34		
Timer	Timer		4 channels • 8-bit timer/event counter: 1 channel • 8-bit timer counter: 1 channel • Basic interval timer/watchdog timer: 1 channel • Watch timer: 1 channel		
Serial interface			3-wire serial I/O mode Switching of MSB/LSB-first 2-wire serial I/O mode SBI mode		
Bit sequential buffer (BSB)		16 bits		
Clock output (PCL)			 Φ, 524, 262, 65.5 kHz (main system clock: at 4.19 MHz operation) Φ, 750, 375, 93.8 kHz (main system clock: at 6.0 MHz operation) 		
Buzzer output (BUZ)			 2, 4, 32 kHz (main system clock: at 4.19 MHz operation or subsystem clock: at 32.768 kHz operation) 2.93, 5.86, 46.9 kHz (main system clock: at 6.0 MHz operation) 		
Vectored interrupt			Exte	ernal: 3 Internal: 4	
Test input			Exte	ernal: 1 Internal: 1	
System clock oscillation circuit		Main system clock oscillation ceramic/crystal oscillation circuit Subsystem clock oscillation crystal oscillation circuit			
Standby function			STOP/HALT mode		
Operating ambient temperature			$T_A = -40 \text{ to } +85^{\circ}\text{C}$		
Supply voltage			V _{DD}	= 2.2 to 5.5 V	
Package			42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) 44-pin plastic QFP (10 × 10 mm, 0.8-mm pitch)		


TABLE OF CONTENTS

1.	PIN CONFIGURATION	4
2.	BLOCK DIAGRAM	6
3.	PIN FUNCTIONS	7
	3.1 Port Pins	7
	3.2 Non-port Pins	8
	3.3 I/O Circuits for Pins	9
	3.4 Handling of Unused Pins	11
4.	SWITCHING BETWEEN MK I AND MK II MODES	
	4.1 Differences between Mk I Mode and Mk II Mode	12
	4.2 Setting of Stack Bank Selection (SBS) Register	13
5.	DIFFERENCES BETWEEN μ PD75P0016 AND μ PD750004, 750006, AND 750008	14
6.	MEMORY CONFIGURATION	15
7.	INSTRUCTION SET	17
8.	ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY	28
	8.1 Operation Modes for Program Memory Write/Verify	28
	8.2 Steps in Program Memory Write Operation	
	8.3 Steps in Program Memory Read Operation	30
	8.4 One-Time PROM Screening	31
9.	ELECTRICAL SPECIFICATIONS	32
10.	CHARACTERISTIC CURVES (REFERENCE VALUE)	46
11.	PACKAGE DRAWINGS	48
12.	RECOMMENDED SOLDERING CONDITIONS	50
ΑP	PENDIX A. FUNCTION LIST OF μ PD75008, 750008, 75P0016	52
ΑP	PENDIX B. DEVELOPMENT TOOLS	54
۸D	PENDIX C. RELATED DOCUMENTS	58

1. PIN CONFIGURATION (Top View)


• 42-pin plastic shrink DIP (600 mil, 1.778-mm pitch) μ PD75P0016CU

★ μPD75P0016CU-A

Note Directly connect VPP to VDD in the normal operation mode.

• 44-pin plastic QFP (10 × 10 mm, 0.8-mm pitch)

Note Directly connect VPP to VDD in the normal operation mode.

 V_{PP}

NC

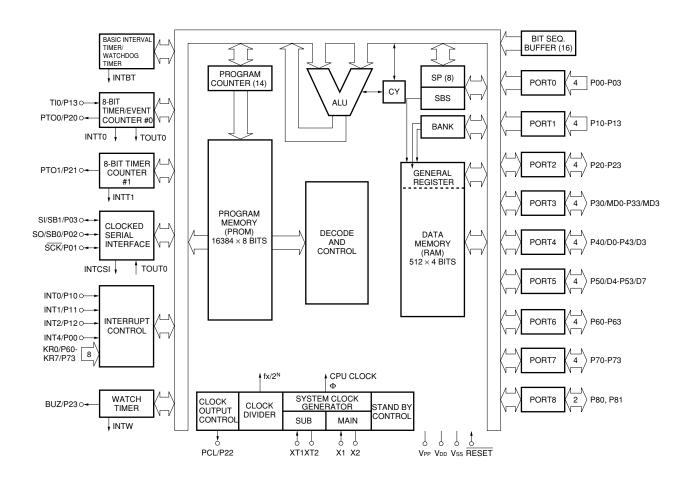
PIN IDENTIFICATIONS

P00-P03	: Port0	SCK	: Serial Clock
P10-P13	: Port1	SI	: Serial Input
P20-P23	: Port2	SO	: Serial Output
P30-P33	: Port3	SB0, SB1	: Serial Data Bus 0,1
P40-P43	: Port4	RESET	: Reset
P50-P53	: Port5	TI0	: Timer Input 0
P60-P63	: Port6	PTO0, PTO1	: Programmable Timer Output 0, 1
P70-P73	: Port7	BUZ	: Buzzer Clock
P80, P81	: Port8	PCL	: Programmable Clock
KR0-KR7	: Key Return 0-7	INT0, 1, 4	: External Vectored Interrupt 0, 1, 4
V_{DD}	: Positive Power Supply	INT2	: External Test Input 2
Vss	: Ground	X1, X2	: Main System Clock Oscillation 1, 2

XT1, XT2

: Programming Power Supply

: No Connection


MD0-MD3 : Mode Selection 0-3

: Subsystem Clock Oscillation 1, 2

D0-D7 : Data Bus 0-7

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins

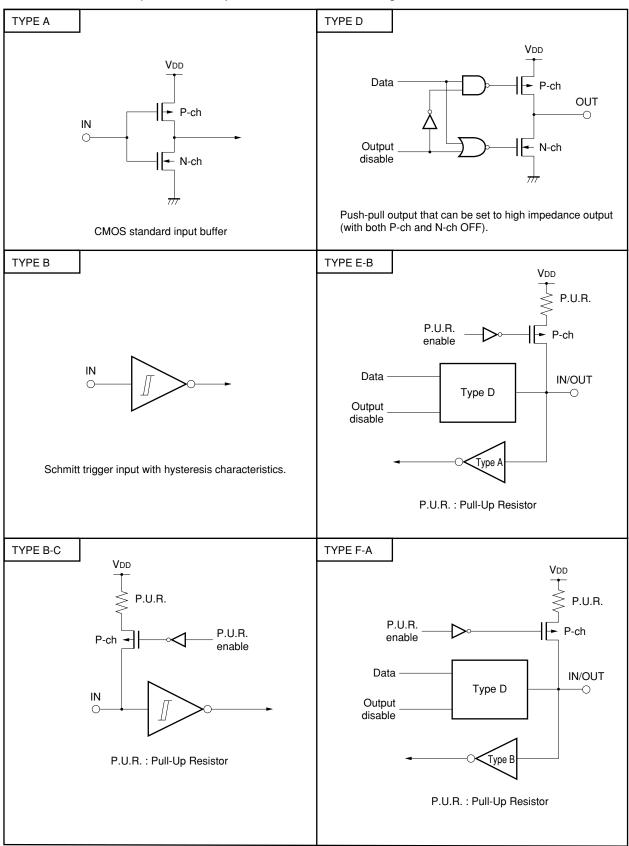
Pin name	I/O	Shared by	Function	8-bit I/O	When reset	I/O circuit type Note 1
P00	ı	INT4	This is a 4-bit input port (PORT0).	×	Input	
P01	I/O	SCK	For P01 to P03, on-chip pull-up resistor connections are software-specifiable in 3-bit units.			<f>-A</f>
P02	I/O	SO/SB0				<f>-B</f>
P03	I/O	SI/SB1				<m>-C</m>
P10	I	INT0	This is a 4-bit input port (PORT1).	×	Input	-C
P11	INT1		On-chip pull-up resistor connections are software- specifiable in 4-bit units.			
P12		INT2	P10/INT0 can select noise elimination circuit.			
P13		TIO				
P20	I/O	PTO0	This is a 4-bit I/O port (PORT2). On-chip pull-up resistor connections are software-specifiable in 4-bit units.	×	Input	E-B
P21		PTO1				
P22		PCL				
P23		BUZ				
P30	I/O	MD0	This is a programmable 4-bit I/O port (PORT3).	×	Input	E-B
P31	MD1		Input and output can be specified in single-bit units. On-chip pull-up resistor connections are			
P32		MD2	software-specifiable in 4-bit units.			
P33		MD3				
P40 Note 2	I/O	D0	This is an N-ch open-drain 4-bit I/O port (PORT4).	0	High	
P41 Note 2		D1	In the open-drain mode, withstands up to 13 V.		impedance	M-E
P42 Note 2		D2				
P43 Note 2		D3	_			
P50 Note 2	I/O	D4	This is an N-ch open-drain 4-bit I/O port (PORT5).		High	
P51 Note 2		D5	In the open-drain mode, withstands up to 13 V.		impedance	M-E
P52 Note 2		D6				
P53 Note 2		D7				
P60	I/O	KR0	This is a programmable 4-bit I/O port (PORT6).	0	Input	<f>-A</f>
P61		KR1	Input and output can be specified in single-bit units. On-chip pull-up resistor connections are software-			
P62		KR2	specifiable in 4-bit units.			
P63		KR3	-			
P70	I/O	KR4	This is a 4-bit I/O port (PORT7).	1	Input	<f>-A</f>
P71	1	KR5	On-chip pull-up resistor connections are software- specifiable in 4-bit units.			
P72	1	KR6	1			
P73	1	KR7	1			
P80	I/O	_	This is a 2-bit I/O port (PORT8).	×	Input	E-B
P81		_	 On-chip pull-up resistor connections are software- specifiable in 2-bit units. 			

 $[\]textbf{Notes 1.} \ \ \textbf{Circuit types enclosed in brackets indicate Schmitt triggered inputs.}$

 $[\]textbf{2.} \quad \text{Low-level input current leakage increases when input instructions or bit manipulation instructions are executed.}$

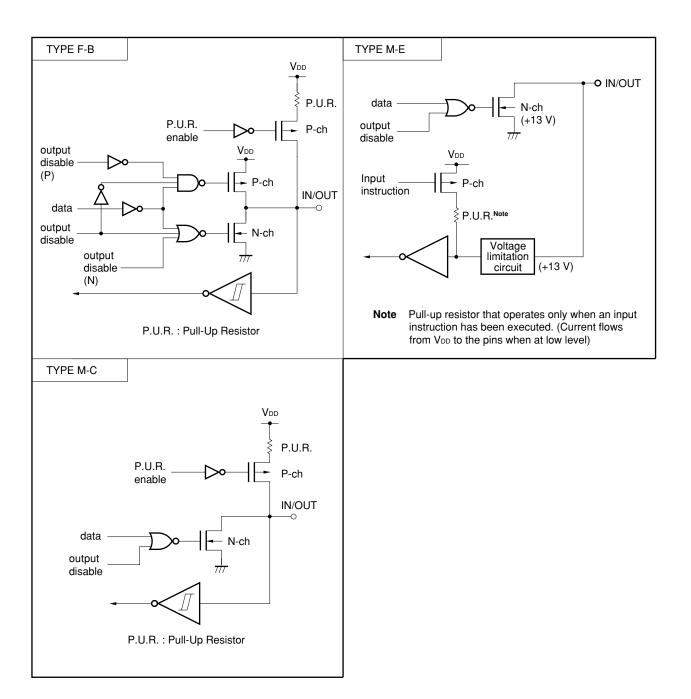
3.2 Non-port Pins

Pin name	I/O	Shared by	Function		When reset	I/O circuit type Note 1
TIO	I	P13	External event pulse input to timer/even	t counter	Input	-C
PTO0	0	P20	Timer/event counter output		Input	E-B
PTO1		P21	Timer counter output			
PCL		P22	Clock output			
BUZ		P23	Outputs any frequency (for buzzer or sy	stem clock trimming)		
SCK	I/O	P01	Serial clock I/O		Input	<f>-A</f>
SO/SB0		P02	Serial data output Serial data bus I/O			<f>-B</f>
SI/SB1		P03	Serial data input Serial data bus I/O			<m>-C</m>
INT4	I	P00	Edge-triggered vectored interrupt input (Detects both rising and falling edges).			
INT0	I	P10	Edge-triggered vectored interrupt input (detected edge is selectable). With noise eliminator /asynch selectable		Input	-C
INT1		P11	INTO/P10 can select noise elimination circuit. Asynch			
INT2		P12	Rising edge-triggered testable input	Asynch		
KR0-KR3	I	P60-P63	Falling edge-triggered testable input		Input	<f>-A</f>
KR4-KR7	I	P70-P73	Falling edge-triggered testable input		Input	<f>-A</f>
X1	1	_	Ceramic/crystal resonator connection fo	•	_	_
X2	_		If using an external clock, input it to X1 a inverted clock to X2.	and input the		
XT1	I	_	Crystal resonator connection for subsys If using an external clock, input it to XT1		_	_
XT2	_		ed clock to X2. XT1 can be used as a 1	'		
RESET	I	_	System reset input (low level active)		_	
MD0-MD3	1	P30-P33	Mode selection for program memory (PI	ROM) write/verify.	Input	E-B
D0-D3	I/O	P40-P43	Data bus pin for program memory (PRC	OM) write/verify.	Input	M-E
D4-D7		P50-P53				
V _{PP} Note 2	_	_	Programmable voltage supply in programmite/verify mode. In normal operation mode, connect direct Apply +12.5 V in PROM write/verify mode.	_	_	
V _{DD}	_	_	Positive power supply		_	
Vss	_	_	Ground potential			


Notes 1. Circuit types enclosed in brackets indicate Schmitt triggered inputs.

2. During normal operation, the VPP pin will not operate normally unless connected to VDD pin.

* *


3.3 I/O Circuits for Pins

The I/O circuits for the μ PD75P0016's pin are shown in schematic diagrams below.

(Continued)

3.4 Handling of Unused Pins

٠

Table 3-1. Handling of Unused Pins

Pin	Recommended connection
P00/INT4	Connect to Vss or VDD
P01/SCK	Individually connect to Vss or VDD via resistor
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0-P12/INT2	Connect to Vss or VDD
P13/TI0	
P20/PTO0	Input mode : individually connect to Vss or VDD
P21/PTO1	via resistor Output mode: open
P22/PCL	
P23/BUZ	
P30/MD0-P33/MD3	
P40/D0-P43/D3	Connect to Vss
P50/D4-P53/D7	
P60/KR0-P63/KR3	Input mode : individually connect to Vss or VDD
P70/KR4-P73/KR7	via resistor Output mode: open
P80, P81	
XT1 ^{Note}	Connect to Vss
XT2 ^{Note}	Open
VPP	Make sure to connect directly to VDD

Note When the subsystem clock is not used, set SOS. 0 to 1 (not to use the internal feedback resistor).

4. SWITCHING BETWEEN MK I AND MK II MODES

Setting a stack bank selection (SBS) register for the μ PD75P0016 enables the program memory to be switched between the Mk I mode and the Mk II mode. This capability enables the evaluation of the μ PD750004, 750006, or 750008 using the μ PD75P0016.

When the SBS bit 3 is set to 1: sets Mk I mode (corresponds to Mk I mode of μ PD750004, 750006, and 750008) When the SBS bit 3 is set to 0: sets Mk II mode (corresponds to Mk II mode of μ PD750004, 750006, and 750008)

4.1 Differences between Mk I Mode and Mk II Mode

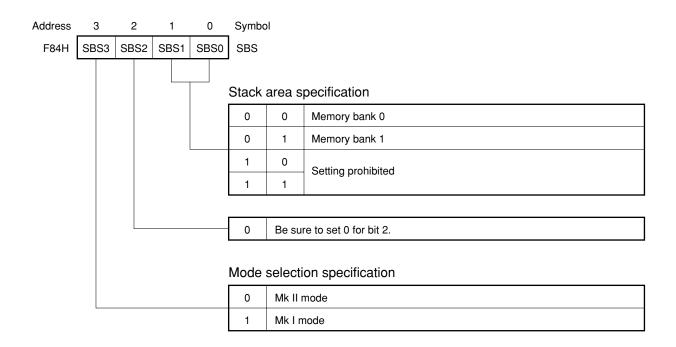
Table 4-1 lists the differences between the Mk I mode and the Mk II mode of the μ PD75P0016.

Table 4-1. Differences between Mk I Mode and Mk II Mode

	Item	Mk I mode Mk II mode			
Program counter		PC13-0			
Program memory (bytes)		16384			
Data memory (bits)		512 × 4	512 × 4		
Stack Stack bank		Selectable from memory banks 0 and 1			
Stack bytes		2 bytes	3 bytes		
Instruction	n BRA laddr1 None CALLA laddr1		Provided		
Instruction	CALL !addr	3 machine cycles	4 machine cycles		
execution time CALLF !faddr		2 machine cycles 3 machine cycles			
Supported mas mode	sk ROM versions and	Mk I mode of μPD750004, 750006, and 750008 Mk II mode of μPD750004, 75 750008			

★ Caution The Mk II mode supports a program area which exceeds 16K bytes in the 75X and 75XL series. This mode enhances the software compatibility with products which have more than 16K bytes.

When the Mk II mode is selected, the number of stack bytes used in execution of a subroutine call instruction increases by 1 per stack for the usable area compared to the Mk I mode. Furthermore, when a CALL !addr, or CALLF !faddr instruction is used, each instruction takes another machine cycle. Therefore, when more importance is attached to RAM utilization or throughput than software compatibility, use the Mk I mode.


4.2 Setting of Stack Bank Selection (SBS) Register

Use the stack bank selection register to switch between the Mk I mode and the Mk II mode. Figure 4-1 shows the format for doing this.

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to $100 \times B^{\text{Note}}$ at the beginning of the program. When using the Mk II mode, be sure to initialize it to $000 \times B^{\text{Note}}$.

Note Set the desired value for \times .

Figure 4-1. Format of Stack Bank Selection Register

Caution SBS3 is set to "1" after RESET input, and consequently the CPU operates in the Mk I mode. When using instructions for the Mk II mode, set SBS3 to "0" to enter the Mk II mode before using the instructions.

5. DIFFERENCES BETWEEN μPD75P0016 AND μPD750004, 750006, AND 750008

The μ PD75P0016 replaces the internal mask ROM in the μ PD750004, 750006, and 750008 with a one-time PROM and features expanded ROM capacity. The μ PD75P0016's Mk I mode supports the Mk I mode in the μ PD750004, 750006, and 750008 and the μ PD75P0016's Mk II mode supports the Mk II mode in the μ PD750004, 750006, and 750008.

Table 5-2 lists differences among the μ PD75P0016 and the μ PD750004, 750006, and 750008. Be sure to check the differences between corresponding versions beforehand, especially when a PROM version is used for debugging or prototype testing of application systems and later the corresponding mask ROM version is used for full-scale production.

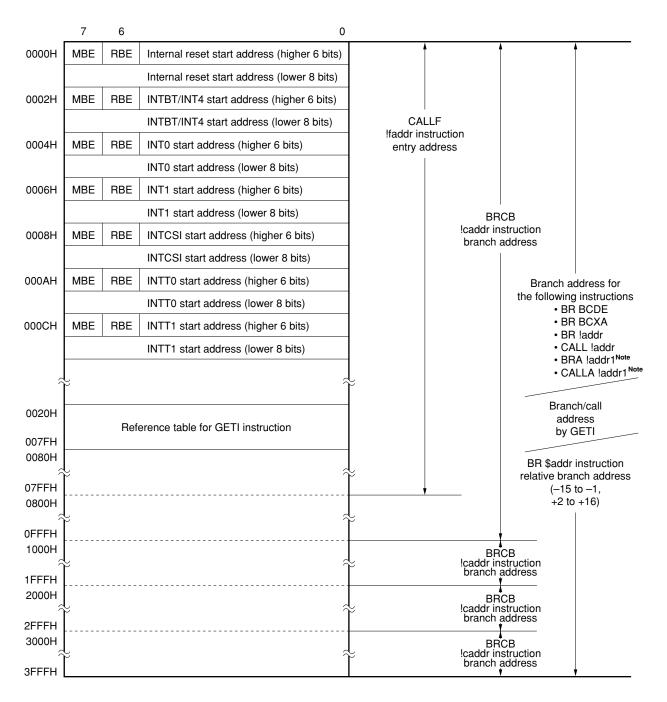
Please refer to the μ PD750008 User's Manual (U10740E) for details on CPU functions and on-chip hardware.

Table 5-1. Differences between μ PD75P0016 and μ PD750004, 750006, and 750008

	Item	μPD750004	μPD750006	μPD750008	μPD75P0016		
Program counter		12-bit	13-bit	•	14-bit		
Program memory (bytes)		Mask ROM 4096	Mask ROM 6144	Mask ROM 8192	One-time PROM 16384		
Data memory (×	4 bits)	512					
Mask options	Pull-up resistor for port 4 and port 5	Yes (On-chip/not or	n-chip can be specified.)	No (On-chip not possible)		
	Wait time when RESET	Yes (2 ¹⁷ /f _x or 2 ¹⁵ /f _x) ¹	Yes $(2^{17}/f_x \text{ or } 2^{15}/f_x)$ Note				
	Feedback resistor for subsystem clock	Yes (can select usa	No (usable)				
Pin connection	Pins 6-9 (CU)	P33-P30	P33/MD3-P30/MD0				
	Pins 23-26 (GB)						
	Pin 20 (CU)	IC	V _{PP}				
	Pin 38 (GB)						
	Pins 34-37 (CU)	P53-P50			P53/D7-P50/D4		
	Pins 8-11 (GB)						
	Pins 38-41 (CU)	P43-P40		P43/D3-P40/D0			
	Pins 13-16 (GB)						
Other	, ,		Noise resistance and noise radiation may differ due to the different circuit complexities a mask layouts.				

Note $2^{17}/f_x$: 21.8 ms @ 6.0 MHz, 31.3 ms @ 4.19 MHz $2^{15}/f_x$: 5.46 ms @ 6.0 MHz, 7.81 ms @ 4.19 MHz

Caution Noise resistance and noise radiation are different in PROM version and mask ROM versions. If using a mask ROM version instead of the PROM version for processes between prototype development and full production, be sure to fully evaluate the CS of the mask ROM version (not ES).


*

*

6. MEMORY CONFIGURATION

Figure 6-1. Program Memory Map

Note Can be used only at Mk II mode.

Remark For instructions other than those noted above, the "BR PCDE" and "BR PCXA" instructions can be used to branch to addresses with changes in the PC's lower 8 bits only.

μPD75P0016

Data memory Memory bank General register area 000H (32×4) 01FH 020H 0 Stack area Note 256×4 (224×4) Data area static RAM (512×4) 0FFH 100H 256 × 4 1FFH Unimplemented F80H 128×4 15 Peripheral hardware area

Figure 6-2. Data Memory Map

Note For the stack area, one memory bank can be selected from memory bank 0 or 1.

FFFH

7. INSTRUCTION SET

(1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, refer to the **RA75X Assembler Package User's Manual [EEU-1363]**). When there are several codes, select and use just one. Upper-case letters, and + and – symbols are key words that should be entered as they are.

For immediate data, enter an appropriate numerical value or label.

Instead of mem, fmem, pmem, bit, etc, a register flag symbol can be described as a label descriptor. (For further description, refer to the μ PD750008 User's Manual [U10740E]) Labels that can be entered for fmem and pmem are restricted.

Representation	Coding format
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL-, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label Note
bit	2-bit immediate data or label
fmem	FB0H-FBFH, FF0H-FFFH immediate data or label
pmem	FC0H-FFFH immediate data or label
addr	0000H-3FFFH immediate data or label
addr1	0000H-3FFFH immediate data or label (in Mk II mode only)
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H-7FH immediate data (however, bit0 = 0) or label
PORTn	PORT0-PORT8
IEXXX	IEBT, IECSI, IET0, IET1, IE0-IE2, IE4, IEW
RBn	RB0-RB3
MBn	MB0, MB1, MB15

Note When processing 8-bit data, only even addresses can be specified.

Data Sheet U10328EJ3V3DS 17

(2) Operation legend

A : A register; 4-bit accumulator

B : B register
C : C register
D : D register
E : E register
H : H register
L : L register
X : X register

XA : Register pair (XA); 8-bit accumulator

BC : Register pair (BC)
DE : Register pair (DE)
HL : Register pair (HL)

XA' : Expansion register pair (XA')
BC' : Expansion register pair (BC')
DE' : Expansion register pair (DE')
HL' : Expansion register pair (HL')

PC: Program counter SP: Stack pointer

CY : Carry flag; bit accumulator
PSW : Program status word
MBE : Memory bank enable flag
RBE : Register bank enable flag

PORTn : Port n (n = 0 to 8)

IME : Interrupt master enable flagIPS : Interrupt priority select register

IExxx : Interrupt enable flag

RBS : Register bank select register

MBS : Memory bank select register

PCC : Processor clock control register

. : Delimiter for address and bit

(xx) : Contents of address xx

xxH : Hexadecimal data

(3) Description of symbols used in addressing area

*1	MB = MBE • MBS	
_ '	MBS = 0, 1, 15	
*2	MB = 0	
	MBE = 0 : MB = 0 (000H-07FH)	
*3	MB = 15 (F80H-FFFH)	Data memory addressing
3	MBE = 1 : MB = MBS	dearessing
	MBS = 0, 1, 15	
*4	MB = 15, fmem = FB0H-FBFH, FF0H-FFFH	
*5	MB = 15, pmem = FC0H-FFFH	
*6	addr = 0000H-3FFFH	
*7	addr, addr1 = (Current PC) -15 to (Current PC) -1	
,	(Current PC) +2 to (Current PC) +16	
	caddr = 0000H-0FFFH (PC13, 12 = 00B) or	
*8	1000H-1FFFH (PC13, 12 = 01B) or	Program memory
	2000H-2FFFH (PC13, 12 = 10B) or	addressing
	3000H-3FFFH (PC13, 12 = 11B)	
*9	faddr = 0000H-07FFH	
*10	taddr = 0020H-007FH	
*11	addr1 = 0000H-3FFFH (Mk II mode only)	

Remarks 1. MB indicates access-enabled memory banks.

- 2. In area *2, MB = 0 for both MBE and MBS.
- 3. In areas *4 and *5, MB = 15 for both MBE and MBS.
- **4.** Areas *6 to *11 indicate corresponding address-enabled areas.

μ**PD75P0016**

(4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

• No skip S=0 • Skipped instruction is 1-byte or 2-byte instruction S=1 • Skipped instruction is 3-byte instruction Note S=2

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, CALLA !addr1

Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle (= tcy) of the CPU clock Φ . Use the PCC setting to select among four cycle times.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Transfer	MOV	A, # n4	1	1	A ← n4		String-effect A
		reg1, # n4	2	2	reg1 ← n4		
		XA, # n8	2	2	XA ← n8		String-effect A
		HL, # n8	2	2	HL ← n8		String-effect B
		rp2, # n8	2	2	rp2 ← n8		
		A, @HL	1	1	A ← (HL)	*1	
		A, @HL+	1	2 + S	$A \leftarrow (HL)$, then $L \leftarrow L + 1$	*1	L = 0
		A, @HL-	1	2 + S	$A \leftarrow (HL)$, then $L \leftarrow L - 1$	*1	L = FH
		A, @rpa1	1	1	A ← (rpa1)	*2	
		XA, @HL	2	2	$XA \leftarrow (HL)$	*1	
		@HL, A	1	1	(HL) ← A	*1	
		@HL, XA	2	2	(HL) ← XA	*1	
		A, mem	2	2	$A \leftarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftarrow (mem)$	*3	
		mem, A	2	2	(mem) ← A	*3	
		mem, XA	2	2	$(mem) \leftarrow XA$	*3	
		A, reg	2	2	A ← reg		
		XA, rp'	2	2	$XA \leftarrow rp'$		
		reg1, A	2	2	reg1 ← A		
		rp'1, XA	2	2	rp'1 ← XA		
	XCH	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @HL+	1	2 + S	$A \leftrightarrow (HL)$, then $L \leftarrow L + 1$	*1	L = 0
		A, @HL-	1	2 + S	$A \leftrightarrow (HL)$, then $L \leftarrow L - 1$	*1	L = FH
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	$A \leftrightarrow reg1$		
		XA, rp'	2	2	$XA \leftrightarrow rp'$		
Table	MOVT	XA, @PCDE	1	3	XA ← (PC13-8 + DE)ROM		
reference		XA, @PCXA	1	3	XA ← (PC13-8 + XA)ROM		
		XA, @BCDE	1	3	$XA \leftarrow (BCDE)_{ROM}^{Note}$	*6	
		XA, @BCXA	1	3	XA ← (BCXA) _{ROM} Note	*6	

Note As for the B register, only the lower 2 bits are valid.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	$CY \leftarrow (fmem.bit)$	*4	
		CY, pmem.@L	2	2	CY ← (pmem7-2 + L3-2.bit(L1-0))	*5	
		CY, @H + mem.bit	2	2	CY ← (H + mem ₃₋₀ .bit)	*1	
		fmem.bit, CY	2	2	(fmem.bit) ← CY	*4	
		pmem.@L, CY	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← CY	*5	
		@H + mem.bit, CY	2	2	(H + mem₃-o.bit) ← CY	*1	
Operation	ADDS	A, #n4	1	1 + S	A ← A + n4		carry
		XA, #n8	2	2 + S	$XA \leftarrow XA + n8$		carry
		A, @HL	1	1 + S	A ← A + (HL)	*1	carry
		XA, rp'	2	2 + S	XA ← XA + rp'		carry
		rp'1, XA	2	2 + S	rp'1 ← rp'1 + XA		carry
	ADDC	A, @HL	1	1	$A, CY \leftarrow A + (HL) + CY$	*1	
		XA, rp'	2	2	$XA, CY \leftarrow XA + rp' + CY$		
		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1 + XA + CY$		
	SUBS	A, @HL	1	1 + S	$A \leftarrow A - (HL)$	*1	borrow
		XA, rp'	2	2 + S	$XA \leftarrow XA - rp'$		borrow
		rp'1, XA	2	2 + S	rp'1 ← rp'1 – XA		borrow
	SUBC	A, @HL	1	1	$A, CY \leftarrow A - (HL) - CY$	*1	
		XA, rp'	2	2	$XA, CY \leftarrow XA - rp' - CY$		
		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1 - XA - CY$		
	AND	A, #n4	2	2	A ← A ∧ n4		
		A, @HL	1	1	A ← A ∧ (HL)	*1	
		XA, rp'	2	2	XA ← XA ∧ rp'		
		rp'1, XA	2	2	rp'1 ← rp'1 ∧ XA		
	OR	A, #n4	2	2	A ← A v n4		
		A, @HL	1	1	A ← A v (HL)	*1	
		XA, rp'	2	2	XA ← XA v rp'		
		rp'1, XA	2	2	rp'1 ← rp'1 v XA		
	XOR	A, #n4	2	2	A ← A ₩ n4		
		A, @HL	1	1	A ← A ♥ (HL)	*1	
		XA, rp'	2	2	XA ← XA ₩ rp'		
		rp'1, XA	2	2	rp'1 ← rp'1 ₩ XA		

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Accumulator	RORC	Α	1	1	$CY \leftarrow A_0, A_3 \leftarrow CY, A_{n-1} \leftarrow A_n$		
manipulate	NOT	Α	2	2	$A \leftarrow \overline{A}$		
Increment/	INCS	reg	1	1 + S	reg ← reg + 1		reg = 0
decrement		rp1	1	1 + S	rp1 ← rp1 + 1		rp1 = 00H
		@HL	2	2 + S	(HL) ← (HL) + 1	*1	(HL) = 0
		mem	2	2 + S	(mem) ← (mem) + 1	*3	(mem) = 0
	DECS	reg	1	1 + S	reg ← reg – 1		reg = FH
		rp'	2	2 + S	rp' ← rp' − 1		rp' = FFH
Compare	SKE	reg, #n4	2	2 + S	Skip if reg = n4		reg = n4
		@HL, #n4	2	2 + S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	1	1 + S	Skip if A = (HL)	*1	A = (HL)
		XA, @HL	2	2 + S	Skip if XA = (HL)	*1	XA = (HL)
		A, reg	2	2 + S	Skip if A = reg		A = reg
		XA, rp'	2	2 +S	Skip if XA = rp'		XA = rp'
Carry flag	SET1	CY	1	1	CY ← 1		
manipulate	CLR1	CY	1	1	CY ← 0		
	SKT	CY	1	1 + S	Skip if CY = 1		CY = 1
	NOT1	CY	1	1	$CY \leftarrow \overline{CY}$		

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Memory bit	SET1	Γ1 mem.bit 2 2 (mem.bit) ← 1		(mem.bit) ← 1	*3		
manipulate		fmem.bit	2	2	(fmem.bit) ← 1	*4	
		pmem.@L	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← 1	*5	
		@H + mem.bit	2	2	(H + mem₃-o.bit) ← 1	*1	
	CLR1	mem.bit	2	2	$(mem.bit) \leftarrow 0$	*3	
		fmem.bit	2	2	(fmem.bit) ← 0	*4	
		pmem.@L	2	2	(pmem7-2 + L3-2.bit(L1-0)) ← 0	*5	
		@H + mem.bit	2	2	(H + mem₃-o.bit) ← 0	*1	
	SKT	mem.bit	2	2 + S	Skip if(mem.bit) = 1	*3	(mem.bit) = 1
		fmem.bit	2	2 + S	Skip if(fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if(pmem7-2 + L3-2.bit(L1-0)) = 1	*5	(pmem.@L) = 1
		@H + mem.bit	2	2 + S	Skip if(H + mem ₃₋₀ .bit) = 1	*1	(@H + mem.bit) = 1
	SKF mem.bit	mem.bit	2	2 + S	Skip if(mem.bit) = 0	*3	(mem.bit) = 0
		fmem.bit	2	2 + S	Skip if(fmem.bit) = 0	*4	(fmem.bit) = 0
		pmem.@L	2	2 + S	Skip if(pmem7-2 + L3-2.bit(L1-0)) = 0	*5	(pmem.@L) = 0
		@H + mem.bit	2	2 + S	Skip if(H + mem ₃₋₀ .bit) = 0	*1	(@H + mem.bit) = 0
	SKTCLR	fmem.bit	2	2 + S	Skip if(fmem.bit) = 1 and clear	*4	(fmem.bit) = 1
		pmem.@L	2	2 + S	Skip if(pmem7-2 + L3-2.bit (L1-0)) = 1 and clear	*5	(pmem.@L) = 1
		@H + mem.bit	2	2 + S	Skip if(H + mem ₃₋₀ .bit) = 1 and clear	*1	(@H + mem.bit) =
	AND1	CY, fmem.bit	2	2	$CY \leftarrow CY \land (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \land (pmem7-2 + L3-2.bit(L1-0))$	*5	
		CY, @H + mem.bit	2	2	CY ← CY ∧ (H + mem₃-o.bit)	*1	
	OR1	CY, fmem.bit	2	2	CY ← CY v (fmem.bit)	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \text{ v (pmem7-2 + L3-2.bit(L1-0))}$	*5	
		CY, @H + mem.bit	2	2	CY ← CY v (H + mem₃-o.bit)	*1	
	XOR1	CY, fmem.bit	2	2	CY ← CY ♥ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY ← CY ♥ (pmem7-2 + L3-2.bit(L1-0))	*5	
		CY, @H + mem.bit	2	2	CY ← CY ♥ (H + mem ₃₋₀ .bit)	*1	

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Branch	BR Note 1	addr	_	_	PC13-0 ← addr Assembler selects the most appropriate instruction among the following: • BR !addr • BRCB !caddr • BR \$addr	*6	
		addr1	_	_	PC13-0 ← addr1 Assembler selects the most appropriate instruction among the following: BRA !addr1 BR !addr BRCB !caddr BR \$addr1	*11	
		!addr	3	3	PC13-0 ← addr	*6	
		\$addr	1	2	PC13-0 ← addr	*7	
		\$addr1	1	2	PC13-0 ← addr1		
		PCDE	2	3	PC13-0 ← PC13-8 + DE		
		PCXA	2	3	PC13-0 ← PC13-8 + XA		
		BCDE	2	3	PC13-0 ← BCDE Note 2	*6	
		BCXA	2	3	PC13-0 ← BCXA Note 2	*6	
	BRA Note 1	!addr1	3	3	PC13-0 ← addr1	*11	
	BRCB	!caddr	2	2	PC13-0 ← PC13, 12 + caddr11-0	*8	

Notes 1. Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.

2. As for the B register, only the lower 2 bits are valid.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine stack control	CALLA Note	!addr1	3	3	$(SP - 5) \leftarrow 0, 0, PC_{13,12}$ $(SP - 6)(SP - 3)(SP - 4) \leftarrow PC_{11-0}$ $(SP - 2) \leftarrow \times, \times, MBE, RBE$	*11	
					PC ₁₃₋₀ ← addr1, SP ← SP − 6		
	CALL Note	!addr	3	3	$(SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0}$	*6	
					$(SP-3) \leftarrow (MBE, RBE, PC_{13, 12})$		
					$PC_{13-0} \leftarrow addr, SP \leftarrow SP - 4$		
				4	$(SP-5) \leftarrow 0, 0, PC_{13,12}$		
					$(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$		
					$(SP-2) \leftarrow \times, \times, MBE, RBE$		
					$PC_{13-0} \leftarrow addr, SP \leftarrow SP - 6$		
	CALLF Note	!faddr	2	2	$(SP-4)(SP-1)(SP-2) \leftarrow PC_{11\text{-}0}$	*9	
					$(SP-3) \leftarrow (MBE, RBE, PC_{13, 12})$		
					$PC_{13\text{-}0} \leftarrow 000 + faddr, SP \leftarrow SP - 4$		
				3	$(SP - 5) \leftarrow 0, 0, PC_{13,12}$		
					$(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$		
					$(SP-2) \leftarrow \times, \times, MBE, RBE$		
					$PC_{13\text{-}0} \leftarrow 000 + faddr, SP \leftarrow SP - 6$		
	RET Note		1	3	(MBE, RBE, PC _{13, 12}) \leftarrow (SP + 1)		
					$PC_{11\text{-}0} \rightarrow (SP)(SP+3)(SP+2)$		
					SP ← SP + 4		
					\times , \times , MBE, RBE \leftarrow (SP + 4)		
					$0, 0, PC_{13-12} \leftarrow (SP + 1)$		
					$PC_{11\text{-}0} \leftarrow (SP)(SP+3)(SP+2)$		
					SP ← SP + 6		
	RETS Note		1	3 + S	$(MBE,RBE,PC_{13,12}) \leftarrow (SP+1)$		Unconditional
					$PC_{11\text{-}0} \leftarrow (SP)(SP+3)(SP+2)$		
					SP ← SP + 4		
					then skip unconditionally		
					\times , \times , MBE, RBE \leftarrow (SP + 4)		
					0, 0, PC ₁₃₋₁₂ ← (SP + 1)		
					$PC_{11-0} \leftarrow (SP)(SP+3)(SP+2)$		
					SP ← SP + 6		
					then skip unconditionally		
	RETI Note		1	3	MBE, RBE, PC _{13, 12} \leftarrow (SP + 1)		
					$PC_{11\text{-}0} \leftarrow (SP)(SP+3)(SP+2)$		
					$PSW \leftarrow (SP + 4)(SP + 5), SP \leftarrow SP + 6$		
					$0, 0, PC_{13, 12} \leftarrow (SP + 1)$		
					$PC11-0 \leftarrow (SP)(SP+3)(SP+2)$		
					$PSW \leftarrow (SP+4)(SP+5),SP \leftarrow SP+6$		

Note Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	PUSH	rp	1	1	$(SP-1)(SP-2) \leftarrow rp, SP \leftarrow SP-2$		
stack control		BS	2	2	$(SP-1) \leftarrow MBS, (SP-2) \leftarrow RBS, SP \leftarrow SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP + 1)(SP), SP \leftarrow SP + 2$		
		BS	2	2	$MBS \leftarrow (SP+1), RBS \leftarrow (SP), SP \leftarrow SP+2$		
Interrupt	EI		2	2	IME(IPS.3) ← 1		
control		IExxx	2	2	IExxx ← 1		
	DI		2	2	IME(IPS.3) ← 0		
		IExxx	2	2	$IExxx \leftarrow 0$		
I/O	IN Note 1	A, PORTn	2	2	$A \leftarrow PORTn$ $(n = 0 - 8)$		
		XA, PORTn	2	2	$XA \leftarrow PORTn_{+1}, PORTn (n = 4, 6)$		
	OUT Note 1	PORTn, A	2	2	PORTn \leftarrow A $(n = 2 - 8)$		
		PORTn, XA	2	2	PORTn+1, PORTn \leftarrow XA $(n = 4, 6)$		
CPU control	HALT		2	2	Set HALT Mode(PCC.2 ← 1)		
	STOP		2	2	Set STOP Mode(PCC.3 ← 1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	$RBS \leftarrow n (n = 0 - 3)$		
		MBn	2	2	$MBS \leftarrow n (n = 0, 1, 15)$		
	GETI Note 2, 3	taddr	1	3	When using TBR instruction	*10	
					PC ₁₃₋₀ ← (taddr) ₅₋₀ + (taddr + 1)		
					When using TCALL instruction		
					$(SP - 4)(SP - 1)(SP - 2) \leftarrow PC_{11-0}$		
					(SP − 3) ← MBE, RBE, PC _{13, 12}		
					PC ₁₃₋₀ ← (taddr) ₅₋₀ + (taddr + 1)		
					SP ← SP – 4		
					When using instruction other than TBR or TCALL Execute (taddr)(taddr + 1) instructions		Determined by referenced instruction
			1	3	When using TBR instruction	*10	
					PC ₁₃₋₀ ← (taddr) ₅₋₀ + (taddr + 1)		
				4	When using TCALL instruction		
					(SP − 5) ← 0, 0, PC _{13, 12}		
					$(SP - 6)(SP - 3)(SP - 4) \leftarrow PC_{11-0}$		
					$(SP-2) \leftarrow \times, \times, MBE, RBE$		
					PC ₁₃₋₀ ← (taddr) ₅₋₀ + (taddr + 1)		
					SP ← SP − 6		
				3	When using instruction other than TBR or TCALL Execute (taddr)(taddr + 1) instructions		Determined by referenced instruction

Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBS to 15.

- 2. TBR and TCALL are assembler directives for the GETI instruction's table definitions.
- 3. Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.

8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The program memory in the μ PD75P0016 is a 16384 × 8-bit electronic write-enabled one-time PROM. The pins listed in the table below are used for this PROM's write/verify operations. Clock input from the X1 pins is used instead of address input as a method for updating addresses.

Pin name	Function
VPP	Pin (usually VDD) where programming voltage is applied during program memory write/verify
X1, X2	Clock input pin for address updating during program memory write/verify. Input the X1 pin's inverted signal to the X2 pin.
MD0/P30-MD3/P33	Operation mode selection pin for program memory write/verify
D0/P40-D3/P43 (lower 4) D4/P50-D7/P53 (higher 4)	8-bit data I/O pin for program memory write/verify
VDD	Pin where power supply voltage is applied. Power voltage range for normal operation is 2.2 to 5.5 V. Apply 6.0 V for program memory write/verify.

Caution Pins not used for program memory write/verify should be processed as follows.

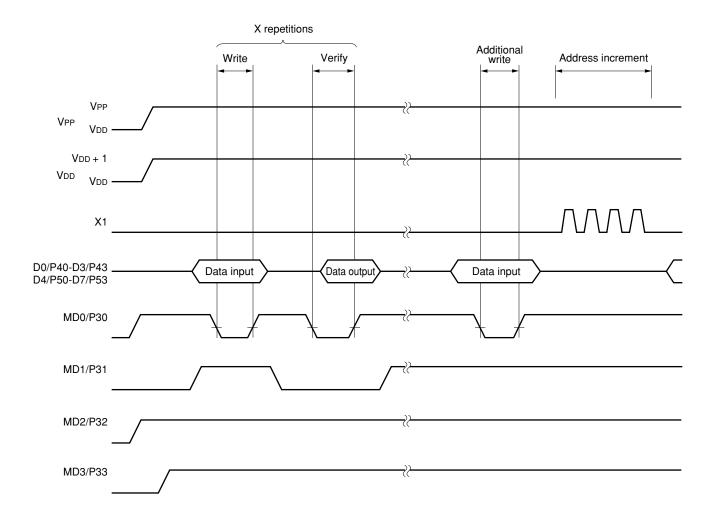
- All unused pins except XT2 Connect to Vss via a pull-down resistor
- XT2 pin Leave open

8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the μ PD75P0016's V_{DD} pin and +12.5 V is applied to its V_{PP} pin, program write/verify modes are in effect. Furthermore, the following detailed operation modes can be specified by setting pins MD0 to MD3 as shown below.

O	peration mo	de speci	fication			Operation mode
VPP	VDD	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	Н	L	Н	L	Zero-clear program memory address
		L	Н	Н	Н	Write mode
		L	L	Н	Н	Verify mode
		Н	×	Н	Н	Program inhibit mode

Remark ×: L or H

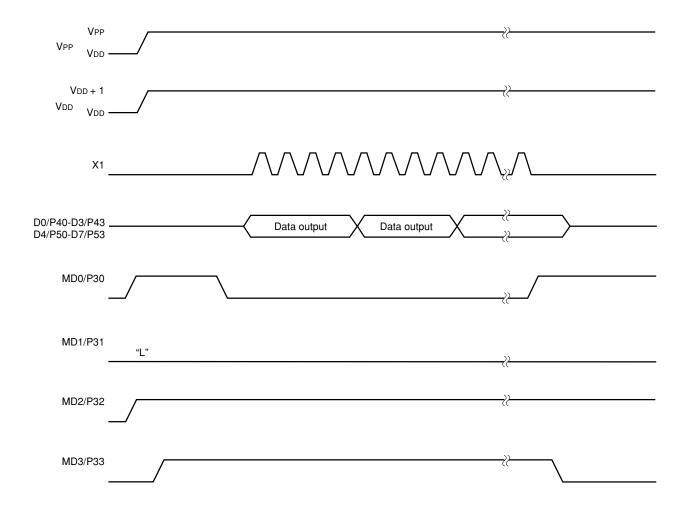


★ 8.2 Steps in Program Memory Write Operation

High-speed program memory write can be executed via the following steps.

- (1) Pull down unused pins to Vss via resistors. Set the X1 pin to low.
- (2) Apply +5 V to the VDD and VPP pins.
- (3) Wait 10 μ s.
- (4) Zero-clear mode for program memory addresses.
- (5) Apply +6 V to VDD and +12.5 V power to VPP.
- (6) Write data using 1-ms write mode.
- (7) Verify mode. If write is verified, go to step (8) and if write is not verified, go back to steps (6) and (7).
- (8) $X = \text{number of write operations from steps (6) and (7)} \times 1 \text{ ms additional write}$
- (9) 4 pulse inputs to the X1 pin updates (increments +1) the program memory address.
- (10) Repeat steps (6) to (9) until the last address is completed.
- (11) Zero-clear mode for program memory addresses.
- (12) Apply +5 V to the VDD and VPP pins.
- (13) Power supply OFF

The following diagram illustrates steps (2) to (9).



★ 8.3 Steps in Program Memory Read Operation

The $\mu\text{PD75P0016}$ can read out the program memory contents via the following steps.

- (1) Pull down unused pins to Vss via resistors. Set the X1 pin to low.
- (2) Apply +5 V to the VDD and VPP pins.
- (3) Wait 10 μ s.
- (4) Zero-clear mode for program memory addresses.
- (5) Apply +6 V power to VDD and +12.5 V to VPP.
- (6) Verify mode. When a clock pulse is input to the X1 pin, data is output sequentially to one address at a time based on a cycle of four pulse inputs.
- (7) Zero-clear mode for program memory addresses.
- (8) Apply +5 V power to the VDD and VPP pins.
- (9) Power supply OFF

The following diagram illustrates steps (2) to (7).

8.4 One-Time PROM Screening

Due to its structure, the one-time PROM cannot be fully tested before shipment by NEC Electronics. Therefore, NEC Electronics recommends the screening process, that is, after the required data is written to the PROM and the PROM is stored under the high- temperature conditions shown below, the PROM should be verified.

Storage temperature	Storage time
125°C	24 hours

★ At present, a fee is charged by NEC Electronics for one-time PROM after-programming imprinting, screening, and verify service for the QTOP Microcontroller. For details, contact an NEC Electronics sales representative.

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.3 to +7.0	V
PROM supply voltage	V _{PP}		-0.3 to + 13.5	V
Input voltage	VII	Other than port 4, 5	-0.3 to V _{DD} +0.3	V
	Vı2	Port 4, 5 (N-ch open drain)	-0.3 to + 14	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3	V
High-level output current	Іон	Per pin	-10	mA
		Total of all pins	-30	mA
Low-level output current	loL	Per pin	30	mA
		Total of all pins	220	mA
Operating ambient temperature	Та		-40 to +85	°C
Storage temperature	T _{stg}		-65 to +150	°C

Caution If the absolute maximum rating of even one of the parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are therefore values which, when exceeded, can cause the product to be damaged. Be sure that these values are never exceeded when using the product.

Capacitance ($T_A = 25^{\circ}C$, $V_{DD} = 0 V$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz			15	pF
Output capacitance	Соит	Pins other than tested pins: 0 V			15	pF
I/O capacitance	Сю				15	pF

Main System Clock Oscillation Circuit Characteristics (TA = - 40 to +85°C)

	Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Ceramic resonator	X1 X2	Oscillation frequency (fx) Note 1	$V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$	1.0		6.0 Note 2	MHz
		C1 C2	Oscillation stabilization time Note 3	After V _{DD} has reached MIN. value of oscillation voltage range			4	ms
	Crystal resonator X1 X2	X1 X2	Oscillation frequency (fx) Note 1	V _{DD} = 2.2 to 5.5 V	1.0		6.0 Note 2	MHz
		C1 = C2	Oscillation stabilization time Note 3	V _{DD} = 4.5 to 5.5 V			10	ms
				V _{DD} = 2.2 to 5.5 V			30	ms
*	External clock	X1 X2	X1 input frequency (fx) Note 1	V _{DD} = 1.8 to 5.5 V	1.0		6.0 Note 4	MHz
*		<u> </u>	X1 input high-, low-level widths (txH, txL)	V _{DD} = 1.8 to 5.5 V	83.3		500	ns

- **Notes 1.** The oscillation frequency and X1 input frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to AC Characteristics.
- **2.** If the oscillation frequency is 4.7 MHz < fx \le 6.0 MHz at 2.2 V \le V_{DD} < 2.7 V of the supply voltage, please do not set processor clock control register (PCC) = 0011. If PCC = 0011, one machine cycle is less than 0.85 μ s, falling short of the rated value of 0.85 μ s.
 - 3. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied or STOP mode has been released.
 - **4.** If the X1 input frequency is 4.19 MHz < $f_x \le 6.0$ MHz at 1.8 V \le V_{DD} < 2.7 V of the supply voltage, please do not set PCC = 0011. If PCC = 0011, one machine cycle time is less than 0.95 μ s, falling short of the rated value of 0.95 μ s.

Caution When using the main system clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influences due to wiring capacitance:

- · Keep the wiring length as short as possible.
- · Do not cross the wiring with other signal lines.
- · Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- \cdot Always keep the ground point of the capacitor of the oscillation circuit at the same potential as V_{DD} .

Do not ground to a power supply pattern through which a high current flows.

· Do not extract signals from the oscillation circuit.

Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to +85°C)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2 R	Oscillation frequency (fxT) Note 1	V _{DD} = 2.2 to 5.5 V	32	32.768	35	kHz
		Oscillation stabilization time Note 2	V _{DD} = 4.5 to 5.5 V		1.0	2	S
			$V_{DD} = 2.2 \text{ to } 5.5 \text{ V}$			10	S
External clock	XT1 XT2	XT1 input frequency (fxT) Note 1	V _{DD} = 1.8 to 5.5 V	to 5.5 V 32		100	kHz
	*	XT1 input high-, low-level widths (txth, txtl)	V _{DD} = 1.8 to 5.5 V	5		15	μs

- **Notes 1.** The oscillation frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to AC Characteristics.
 - 2. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied.

Caution When using the subsystem clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influences due to wiring capacitance:

- · Keep the wiring length as short as possible.
- · Do not cross the wiring with other signal lines.
- · Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- · Always keep the ground point of the capacitor of the oscillation circuit at the same potential as VDD.

Do not ground to a power supply pattern through which a high current flows.

· Do not extract signals from the oscillation circuit.

The subsystem clock oscillation circuit has a low amplification factor to reduce current dissipation and is more susceptible to noise than the main system clock oscillation circuit. Therefore, exercise utmost care in wiring the subsystem clock oscillation circuit.

★ RECOMMENDED OSCILLATION CIRCUIT CONSTANT

Main System Clock: Ceramic Resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part Number	Frequency	Oscillation Circuit Constant (pF)		Oscillation Voltage Range (V _{DD})		Remark
		(MHz)	C1	C2	MIN. (V)	MAX. (V)	
TDK Corp.	CCR4.0MC32	4.0	10	10	2.3	5.5	_

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

DC Characteristics ($T_A = -40 \text{ to} + 85^{\circ}\text{C}$, $V_{DD} = 2.2 \text{ to} 5.5 \text{ V}$)

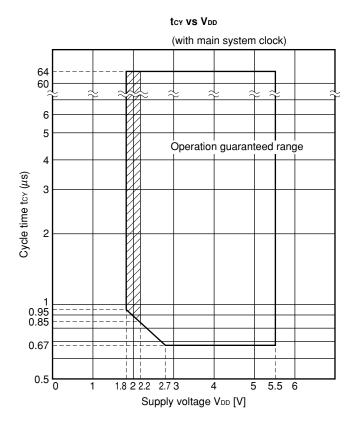
Parameter	Symbol		Conditions	3	MIN.	TYP.	MAX.	Unit
Low-level	loL	Per pin					15	mA
output current		Total of all	pins				150	mA
High-level input	V _{IH1}	Ports 2, 3,	8	$2.7 \le V_{DD} \le 5.5 V$	0.7 V _{DD}		V _{DD}	V
voltage				$2.2 \leq V_{DD} \leq 2.7 V$	0.9 V _{DD}		V _{DD}	V
	V _{IH2}	Ports 0, 1,	6, 7, RESET	$2.7 \leq V_{DD} \leq 5.5 V$	0.8 V _{DD}		V _{DD}	V
				$2.2 \leq V_{DD} \leq 2.7 V$	0.9 V _{DD}		V _{DD}	V
	VIH3	Ports 4, 5 (N-ch open drain)	$2.7 \leq V_{DD} \leq 5.5 V$	0.7 V _{DD}		13	V
				$2.2 \leq V_{DD} \leq 2.7 V$	0.9 V _{DD}		13	V
	V _{IH4}	X1, XT1			V _{DD} -0.1		V _{DD}	V
Low-level input	V _{IL1}	Ports 2-5, 8	3	$2.7 \le V_{DD} \le 5.5 V$	0		0.3 V _{DD}	V
voltage				$2.2 \le V_{DD} \le 2.7 V$	0		0.1 V _{DD}	V
	V _{IL2}	Ports 0, 1,	6, 7, RESET	$2.7 \le V_{DD} \le 5.5 V$	0		0.2 V _{DD}	V
				$2.2 \le V_{DD} \le 2.7 V$	0		0.1 V _{DD}	V
	VIL3	X1, XT1			0		0.1	V
High-level output voltage	Vон	\overline{SCK} , SO, p loh = -1.0 r	oorts 2, 3, 6-8 mA		V _{DD} -0.5			V
Low-level output	V _{OL1}	SCK, SO,	IoL = 15 mA, VDD	= 4.5 to 5.5 V		0.2	2.0	V
voltage		ports 2-8	IoL = 1.6 mA				0.4	V
	V _{OL2}	SB0, SB1	N-ch open drain				0.2 V _{DD}	V
			Pull-up resistor ≥	1 kΩ				
High-level input	Ішн1	$V_{IN} = V_{DD}$	Pins other than X	1 and XT1			3	μΑ
leakage current	I _{LIH2}		X1, XT1				20	μΑ
	Ішнз	VIN = 13 V	Ports 4, 5 (N-ch o	open drain)			20	μΑ
Low-level input	ILIL1	$V_{IN} = 0 V$	Pins other than p	orts 4, 5, X1 and XT1			-3	μΑ
leakage current	ILIL2		X1, XT1				-20	μΑ
	Ішіз		Ports 4, 5 (N-ch of input instruction in	open drain) When s not executed			-3	μΑ
			Ports 4, 5 (N-ch				-30	μΑ
			open drain)				00	μΑ
			When input	VDD = 5.0 V		-10	-27	μΑ
			instruction is executed	V _{DD} = 3.0 V		-3	-8	μΑ
High-level output	Ісон1	Vout = Vdd		31, Ports 2, 3, 6-8			3	μΑ
leakage current	ILOH2	Vout = 13 V					20	μΑ
Low-level output	ILOL	Vout = 0 V					-3	μΑ
leakage current								
Internal pull-up	RL	VIN = 0 V	V _{IN} = 0 V Ports 0-3, 6-8 (except P00 pin)		50	100	200	kΩ
resistor								

*

DC Characteristics ($T_A = -40 \text{ to} + 85^{\circ}\text{C}$, $V_{DD} = 2.2 \text{ to} 5.5 \text{ V}$)

Parameter	Symbol		C	onditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	6.0 MHz Note 2	V _{DD} = 5.0	V ± 10 % No	te 3		3.7	11.0	mA
		crystal oscillation C1 = C2	V _{DD} = 3.0	V ± 10 % No	te 4		0.73	2.2	mA
	I _{DD2}	= 22 pF	HALT	V _{DD} = 5.0	V ± 10 %		0.92	2.6	mA
			mode	V _{DD} = 3.0	V ± 10 %		0.3	0.9	mA
	I _{DD1}	4.19 MHz Note 2	V _{DD} = 5.0	V ± 10 % No	te 3		2.7	8.0	mA
		crystal oscillation C1 = C2	V _{DD} = 3.0	V ± 10 % No	te 4		0.57	1.7	mA
	I _{DD2}	= 22 pF	HALT	V _{DD} = 5.0	V ± 10 %		0.9	2.5	mA
			mode	V _{DD} = 3.0	V ± 10 %		0.28	0.8	mA
	IDD3	32.768	Low-	V _{DD} = 3.0	V ± 10 %		42	126	μΑ
		kHz Note 5 crystal oscillation	voitage	V _{DD} = 2.5	V ± 10 %		23	69	μΑ
		oryotal occination		V _{DD} = 3.0	V, T _A = 25 °C		42	84	μΑ
			Low current	V _{DD} = 3.0	V ± 10 %		39	117	μΑ
			dissipation mode Note 7	V _{DD} = 3.0	V, T _A = 25 °C		39	78	μΑ
	I _{DD4}		HALT	Low-	V _{DD} = 3.0 V ± 10 %		8.5	25	μΑ
			mode	voltage mode Note 6	V _{DD} = 2.5 V ± 10 %		5.0	15	μΑ
				IIIOGE IIII	V _{DD} = 3.0 V, T _A = 25 °C		8.5	17	μΑ
				Low current consumption	V _{DD} = 3.0 V ± 10 %		3.5	12	μΑ
				mode Note 7	V _{DD} = 3.0 V, T _A = 25 °C		3.5	7	μΑ
	I _{DD5}	XT1 = 0V Note 8	(T1 = 0V Note 8 VDD = 5.0 V				0.05	10	μΑ
		STOP mode	V _{DD} = 3.0	V ± 10 %			0.02	5	μΑ
					T _A = 25 °C		0.02	3	μΑ

Notes 1. The current flowing through the internal pull-up resistor is not included.


- 2. Including the case when the subsystem clock oscillates.
- **3.** When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
- 4. When the device operates in low-speed mode with PCC set to 0000.
- **5.** When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
- 6. When the suboscillation circuit control register (SOS) is set to 0000.
- 7. When SOS is set to 0010.
- ★ 8. When SOS is set to 00×1, and the suboscillation circuit feedback resistor is not used (x: don't care).

AC Characteristics ($T_A = -40 \text{ to} + 85^{\circ}\text{C}$, $V_{DD} = 2.2 \text{ to} 5.5 \text{ V}$)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle	tcy	Operates with	with ceramic oscillator or	V _{DD} = 2.7 to 5.5 V	0.67		64	μs
time ^{Note 1}		main system clock	crystal resonator		0.85		64	μs
(minimum instruction			with external clock	V _{DD} = 2.7 to 5.5 V	0.67		64	μs
execution time = 1			CIOCK	$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$	0.95		64	μs
machine cycle)		Operates with	subsystem clock		114	122	125	μs
TI0 input frequency	f⊤ı	$V_{DD} = 2.7 \text{ to } 5.8$	V _{DD} = 2.7 to 5.5 V				1.0	MHz
					0		275	kHz
TI0 high-, low-level	ttiH, ttiL	V _{DD} = 2.7 to 5.	5 V		0.48			μs
widths					1.8			μs
Interrupt input high-,	tinth,	INT0		IM02 = 0	Note 2			μs
low-level widths	tintl		IM02 = 1					μs
		INT1, 2, 4	10			μs		
		KR0-KR7			10			μs
RESET low-level width	trsl				10			μs

- Notes 1. The cycle time of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator (and external clock), the system clock control register (SCC), and processor clock control register (PCC). The figure on the right shows the supply voltage V_{DD} vs. cycle time tcγ characteristics when the device operates with the main system clock.
 - 2. 2tcy or 128/fx depending on the setting of the interrupt mode register (IM0).

Remark Shaded area indicates operation when external clock is used.

Serial Transfer Operation

2-wire and 3-wire serial I/O modes (SCK ··· internal clock output): (TA = -40 to +85°C, VDD = 2.2 to 5.5 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcY1	$V_{DD} = 2.7 \text{ to } 5.5 $	/	1300			ns
				3800			ns
SCK high-, low-level widths	tĸL1,	V _{DD} = 2.7 to 5.5 \	/	tксү1/2-50			ns
	t _{KH1}			tксү1/2-150			ns
SI ^{Note 1} setup time	tsıĸı	V _{DD} = 2.7 to 5.5 \	/	150			ns
(vs. SCK ↑)				500			ns
SI ^{Note 1} hold time	tksi1	V _{DD} = 2.7 to 5.5 \	/	400			ns
(vs. SCK ↑)				600			ns
$\overline{SCK} \downarrow \to SO^{Note\; 1}$ output	tkso1	$R_L = 1 k\Omega^{Note 2}$	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		250	ns
delay time		C _L = 100 pF		0	· · · · · · · · · · · · · · · · · · ·	1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

2-wire and 3-wire serial I/O modes (\overline{SCK} ··· external clock input): (TA = -40 to +85°C, VDD = 2.2 to 5.5 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2	V _{DD} = 2.7 to 5.5 V		800			ns
				3200			ns
SCK high-, low-level widths	tĸL2,	V _{DD} = 2.7 to 5.5 \	/	400			ns
	t _{KH2}			1600			ns
SI ^{Note 1} setup time	tsik2	V _{DD} = 2.7 to 5.5 \	/	100			ns
(vs. SCK ↑)				150			ns
SI ^{Note 1} hold time	tksi2	$V_{DD} = 2.7 \text{ to } 5.5 $	/	400			ns
(vs. SCK ↑)				600			ns
$\overline{\text{SCK}} \downarrow \to \text{SO}^{\text{Note 1}}$ output	t KSO2	$R_L = 1 k\Omega$ Note 2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		300	ns
delay time		C _L = 100 pF		0		1000	ns

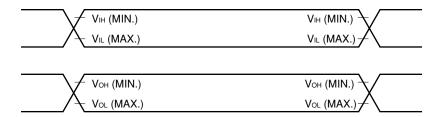
Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

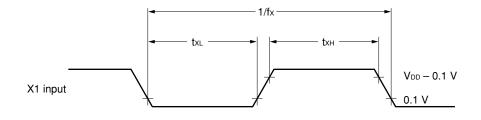
SBI mode (SCK ··· internal clock output (master)): (TA = -40 to +85°C, VDD = 2.2 to 5.5 V)

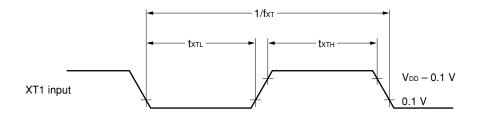
Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy3	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	J	1300			ns
				3800			ns
SCK high-, low-level widths	tкL3	$V_{DD} = 2.7 \text{ to } 5.5 $	/	tксүз/2-50			ns
	tкнз			tксүз/2-150			ns
SB0, 1 setup time	tsik3	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	J	150			ns
(vs. SCK ↑)				500			ns
SB0, 1 hold time (vs. SCK ↑)	tksi3			tксүз/2			ns
$\overline{\operatorname{SCK}} \downarrow \to \operatorname{SB0}$, 1 output	tkso3	$R_L = 1 k\Omega$ Note	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		250	ns
delay time		C _L = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, 1 \downarrow$	tкsв			tксүз			ns
SB0, 1 $\downarrow \rightarrow \overline{SCK} \downarrow$	t sbk			tксүз			ns
SB0, 1 low-level width	tsbl			tксүз			ns
SB0, 1 high-level width	tsвн			tксүз			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0 and 1 output lines.

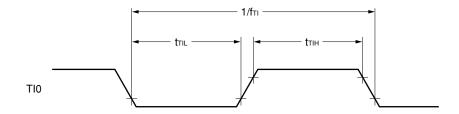

SBI mode (SCK ··· external clock input (slave)): (TA = -40 to +85°C, VDD = 2.2 to 5.5 V)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy4	V _{DD} = 2.7 to 5.5	V	800			ns
				3200			ns
SCK high-, low-level widths	t _{KL4}	V _{DD} = 2.7 to 5.5	V	400			ns
	tkH4			1600			ns
SB0, 1 setup time	tsik4	V _{DD} = 2.7 to 5.5	V	100			ns
(vs. SCK ↑)				150			ns
SB0, 1 hold time (vs. SCK ↑)	tksi4			tkcy4/2			ns
$\overline{SCK} \downarrow \to SB0$, 1 output	tkso4	$R_L = 1 k\Omega$ Note	V _{DD} = 2.7 to 5.5 V	0		300	ns
delay time		C _L = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, 1 \downarrow$	tĸsв			tkcy4			ns
SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$	tsвк			tkcy4			ns
SB0, 1 low-level width	tsbl			tkcy4			ns
SB0, 1 high-level width	tsвн			tkcy4			ns

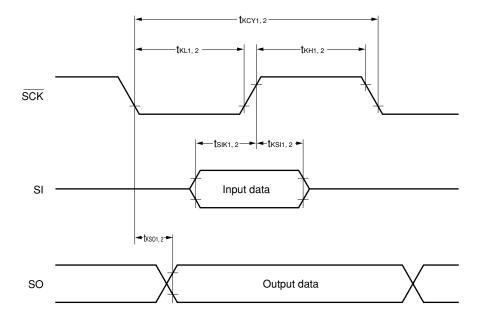

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0 and 1 output lines.

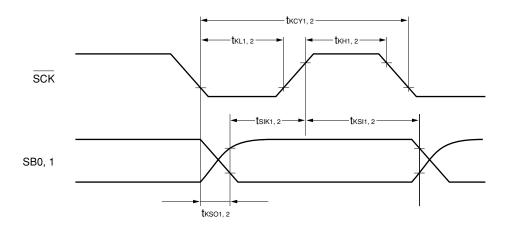

Data Sheet U10328EJ3V3DS

★ AC Timing Test Points (except X1 and XT1 inputs)



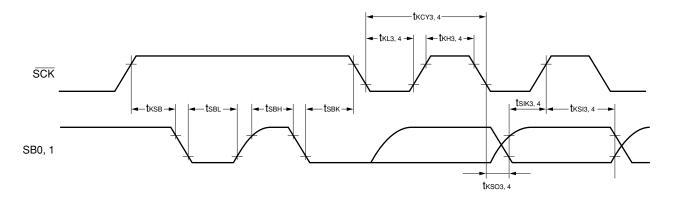
★ Clock timing

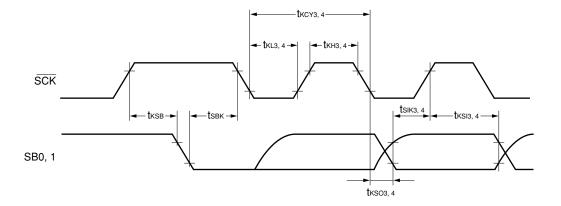

TI0 timing



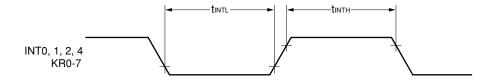
Serial Transfer Timing

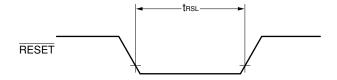
3-wire serial I/O mode


2-wire serial I/O mode



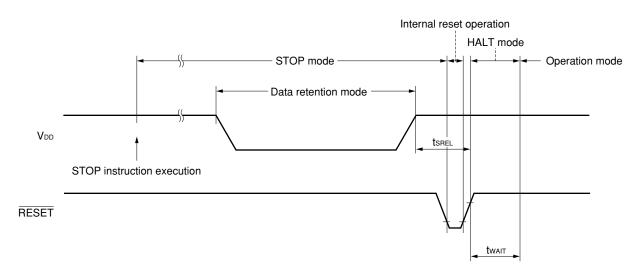
Serial Transfer Timing


Bus release signal transfer

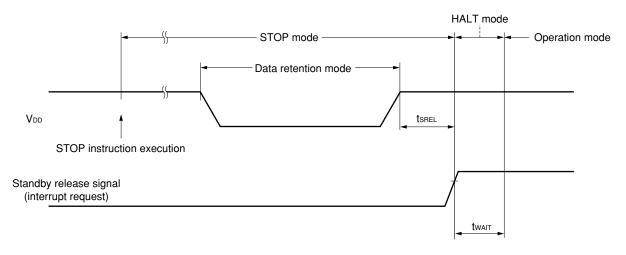

Command signal transfer

Interrupt input timing

RESET input timing


Data Retention Characteristics of Data Memory in STOP Mode and at Low Supply Voltage $(T_A = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Release signal setup time	tsrel		0			μs
Oscillation stabilization	twait	Released by RESET		2 ¹⁵ /f _x		ms
wait time Note 1		Released by interrupt request		Note 2		ms


- **Notes 1.** The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.
 - 2. Set by the basic interval timer mode register (BTM). (Refer to the table below.)

BTM3	BTM2	BTM1	BTM0	Wait	Time
D I IVI3	DIWZ	DIMI	DIMO	fx = 4.19 MHz	$f_x = 6.0 \text{ MHz}$
_	0	0	0	2 ²⁰ /f _x (approx. 250 ms)	2 ²⁰ /f _x (approx. 175 ms)
_	0	1	1	2 ¹⁷ /f _x (approx. 31.3 ms)	2 ¹⁷ /f _x (approx. 21.8 ms)
_	1	0	1	2 ¹⁵ /f _x (approx. 7.81 ms)	2 ¹⁵ /f _x (approx. 5.46 ms)
_	1	1	1	2 ¹³ /f _x (approx. 1.95 ms)	2 ¹³ /f _x (approx. 1.37 ms)

Data retention timing (when STOP mode released by RESET)

Data retention timing (standby release signal: when STOP mode released by interrupt signal)

DC Programming Characteristics (TA = 25 \pm 5°C, VDD = 6.0 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0V)

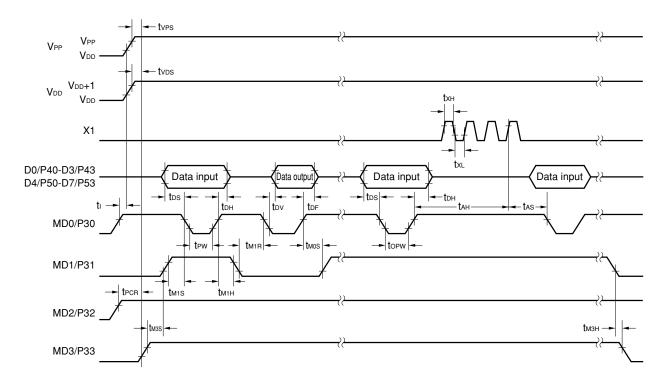
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Other than X1, X2 pins	0.7 V _{DD}		V _{DD}	V
	V _{IH2}	X1, X2	V _{DD} - 0.5		V _{DD}	V
Input voltage, low	V _{IL1}	Other than X1, X2 pins	0		0.3 V _{DD}	V
	V _{IL2}	X1, X2	0		0.4	V
Input leakage current	Lu	VIN = VIL OF VIH			10	μΑ
Output voltage, high	Vон	lон = − 1 mA	V _{DD} - 1.0			V
Output voltage, low	Vol	IoL = 1.6 mA			0.4	V
V _{DD} supply current	IDD				30	mA
VPP supply current	IPP	MD0 = VIL, MD1 = VIH			30	mA

Cautions 1. Keep VPP to within +13.5 V, including overshoot.

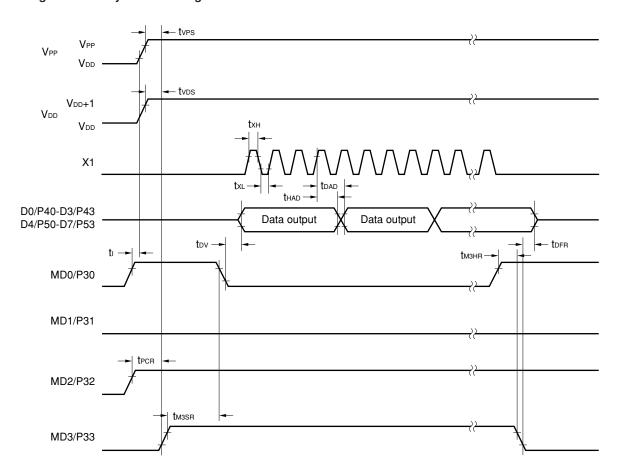
2. Apply VDD before VPP and turn it off after VPP.

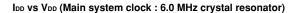
AC Programming Characteristics (TA = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, Vss = 0 V)

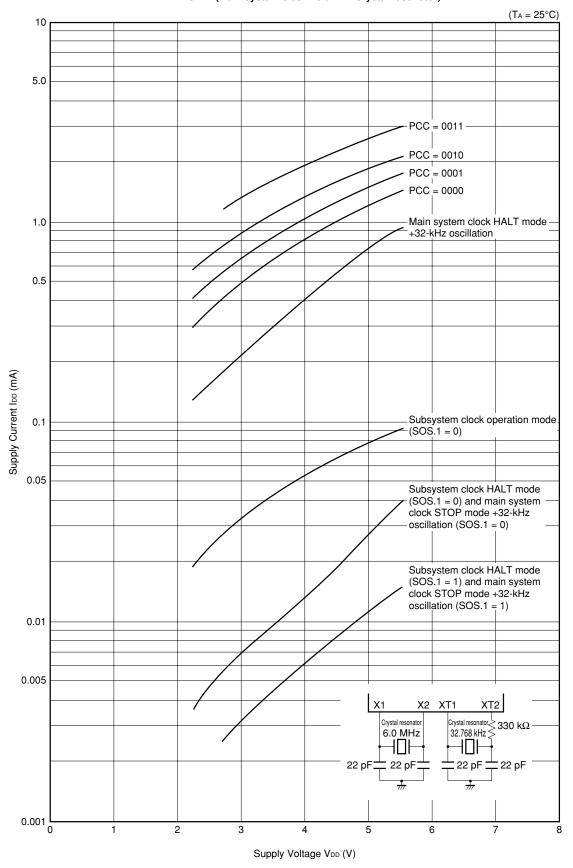
Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time Note 2 (vs. MD0 ↓)	tas	tas		2			μs
MD1 setup time (vs. MD0 ↓)	t _{M1S}	toes		2			μs
Data setup time (vs. MD0 ↓)	tos	tos		2			μs
Address hold time Note 2 (vs. MD0 ↑)	tан	tah		2			μs
Data hold time (vs. MD0 ↑)	t DH	tон		2			μs
MD0 $\uparrow \rightarrow$ data output float delay time	tof	tof		0		130	ns
V _{PP} setup time (vs. MD3 ↑)	tvps	tvps		2			μs
V _{DD} setup time (vs. MD3 ↑)	tvos	tvcs		2			μs
Initial program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (vs. MD1 ↑)	tмos	tces		2			μs
MD0 \downarrow \rightarrow data output delay time	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (vs. MD0 ↑)	t _{м1} н	toeh	tm1H + tm1R ≥ 50 μs	2			μs
MD1 recovery time (vs. MD0 ↓)	t _{M1R}	tor		2			μs
Program counter reset time	tpcr	_		10			μs
X1 input high-, low-level width	tхн, tхL	_		0.125			μs
X1 input frequency	fx	_				4.19	MHz
Initial mode set time	t ₁	_		2			μs
MD3 setup time (vs. MD1 ↑)	tмзs	_		2			μs
MD3 hold time (vs. MD1 \downarrow)	tмзн	_		2			μs
MD3 setup time (vs. MD0 ↓)	tмзsr	_	When program memory is read	2			μs
Address Note 2 \rightarrow data output delay time	t dad	tacc	When program memory is read			2	μs
Address Note 2 \rightarrow data output hold time	thad	tон	When program memory is read	0		130	ns
MD3 hold time (vs. MD0 ↑)	tмзнк	_	When program memory is read	2			μs
MD3 \downarrow \rightarrow data output float delay time	t DFR	_	When program memory is read			2	μs


Notes 1. Symbol of corresponding μ PD27C256A

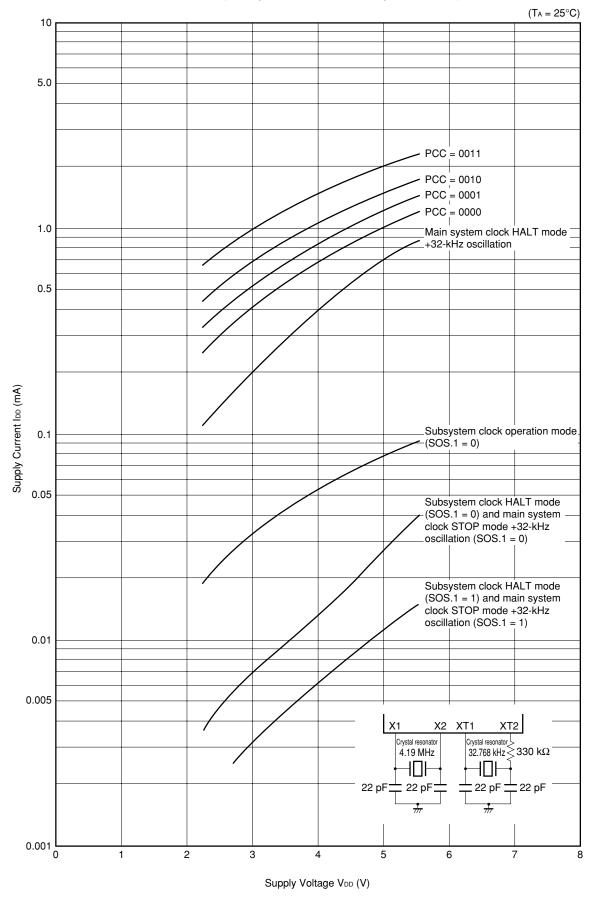
2. The internal address signal is incremented by one at the rising edge of the fourth X1 input and is not connected to a pin.


*

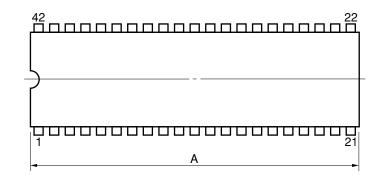

Program Memory Write Timing

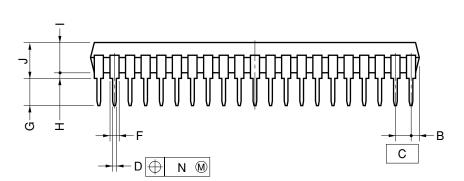


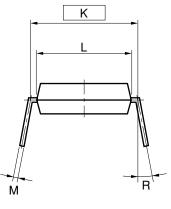
Program Memory Read Timing



★ 10. CHARACTERISTICS CURVES (REFERENCE VALUE)

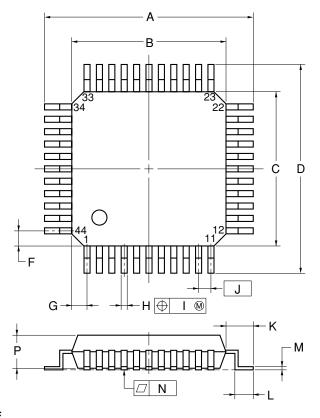



IDD vs VDD (Main system clock : 4.19 MHz crystal resonator)

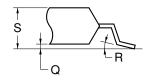


11. PACKAGE DRAWINGS

42PIN PLASTIC SHRINK DIP (600 mil)


NOTES

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	39.13 MAX.	1.541 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
T	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
М	0.25 ^{+0.10} -0.05	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°

P42C-70-600A-1

44 PIN PLASTIC QFP (□10)

detail of lead end

NOTE

Each lead centerline is located within 0.16 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	13.2±0.2	$0.520^{+0.008}_{-0.009}$
В	10.0±0.2	$0.394^{+0.008}_{-0.009}$
С	10.0±0.2	0.394+0.008
D	13.2±0.2	0.520+0.008
F	1.0	0.039
G	1.0	0.039
Н	$0.37^{+0.08}_{-0.07}$	$0.015^{+0.003}_{-0.004}$
I	0.16	0.007
J	0.8 (T.P.)	0.031 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009
М	0.17 +0.06 -0.05	$0.007^{+0.002}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.125±0.075	0.005±0.003
R	3°+7°	3°+7°
S	3.0 MAX.	0.119 MAX.

S44GB-80-3BS

12. RECOMMENDED SOLDERING CONDITIONS

The μ PD75P0016 should be soldered and mounted under the following recommended conditions. For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 12-1. Surface Mounting Type Soldering Conditions

(1) μ PD75P0016GB-3BS-MTX: 44-pin plastic QFP (10 × 10 mm, 0.8 mm pitch)

Soldering method	Soldering conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

\bigstar (2) μ PD75P0016GB-3BS-MTX-A: 44-pin plastic QFP (10 \times 10 mm, 0.8 mm pitch)

Soldering method	Soldering conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Wave soldering	For details, contact an NEC Electronics sales representative.	_
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

- **Remarks 1.** Products with "-A" at the end of the part number are lead-free products.
 - 2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

Table 12-2. Insertion Type Soldering Conditions

 μ PD75P0016CU: 42-pin plastic shrink DIP (600 mil, 1.778 mm pitch) μ PD75P0016CU-A: 42-pin plastic shrink DIP (600 mil, 1.778 mm pitch)

Soldering Method Soldering Conditions	
Wave soldering (pin only)	Solder bath temperature: 260°C max., Time: 10 seconds max.
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (for each pin)

Caution Apply wave soldering to pins only. See to it that the jet solder does not contact with the chip directly.

- Remarks 1. Products with "-A" at the end of the part number are lead-free products.
 - 2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

Data Sheet U10328EJ3V3DS 51

APPENDIX A. FUNCTION LIST OF μ PD75008, 750008, 75P0016

(1/2)

		22222	I		(1/2
Item		μPD75008		μPD750008	μPD75P0016
Program men	nory	Mask ROM		ROM	One-time PROM
		0000H - 1F7FH		H - 1FFFH	0000H - 3FFFH
_		(8064 × 8 bits)	(8192	2 × 8 bits)	(16384 × 8 bits)
Data memory		000H - 1FFH			
			(512 × 4 bits)		
CPU		75X Standard CPU	75XL		
General regis	ter	4 bits × 8 or 8 bits × 4	(4 bits	s \times 8 or 8 bits \times 4) \times 4	4 banks
Instruction	When main system	• 0.95, 1.91, 15.3 μs			(at 4.19 MHz operation)
execution	clock is selected	(at 4.19 MHz operation)	• 0.67	7, 1.33, 2.67, 10.7 μs	(at 6.0 MHz operation)
time	When subsystem clock is selected	122 μs (at 32.768 kHz ope	ration)		
Stack	SBS register	None	Yes	SBS.3 = 1: Mk I mo	de selected
				SBS.3 = 0: Mk II mc	ode selected
	Stack area	000H - 0FFH	n00H	- nFFH (n = 0, 1)	
	Stack operation of	2-byte stack	In Mk	I mode: 2-byte stack	
	subroutine call instruction		In Mk	II mode: 3-byte stack	(
Instructions	BRA !addr1	Unusable	In Mk I mode: Unusable		
	CALLA !addr1		In Mk	II mode: Usable	
	MOVT XA, @BCDE		Usabl	le	
	MOVT XA, @BCXA				
	BR BCDE				
	BR BCXA				
	CALL !addr	3 machine cycles	Mk I mode: 3 machine cycles		
			Mk II	mode: 4 machine cyc	les
	CALLF !faddr	2 machine cycles	Mkli	mode: 2 machine cycl	es
			Mk II	mode: 3 machine cyc	les
Timer		3 channels	4 cha		
		Basic interval timer:		ic interval timer/watch	-
		1 channel		t timer/event counter:	
		8-bit timer/event counter:		t timer counter: 1 cha	nnel
		1 channel • Watch timer: 1 channel	• wat	ch timer: 1 channel	
Clock cutout	(PCL)			204 060 65 5 kH=	
Clock output	(FGL)	 Φ, 524, 262, 65.5 kHz (main system clock: 		524, 262, 65.5 kHz in system clock: at 4. ⁻	19 MHz operation)
		at 4.19 MHz operation)		750, 375, 93.8 kHz	10 Miliz operation)
		at 1.10 mile opolation)		in system clock: at 6.0	MHz operation)
BUZ output (f	BUZ)	• 2 kHz		, 32 kHz	
_ output (t		- 1012		in system clock: at 4.	19 MHz operation)
			١ ١	3, 5.86, 46.9 kHz	
				in system clock: at 6.0	MHz operation)

(2/2)

				(2/2)			
Item		μPD75008	μPD750008	μ PD75P0016			
Serial interface		Compatible with 3 kinds of	Compatible with 3 kinds of mode				
		• 3-wire serial I/O mode	• 3-wire serial I/O mode MSB/LSB-first can be switched				
		 2-wire serial I/O mode 					
		SBI mode					
SOS register	Feedback resistor	On-chip feedback resistor	On chip				
	cut flag (SOS.0)	specifiable by mask option					
	Sub oscillator current	None	On chip				
	cut flag (SOS.1)						
Register bank	selection register	None	Yes				
(RBS)							
Standby releas	se by INT0	Not possible	Possible				
Vectored inter	rupt	External: 3 Internal: 3	External: 3 Internal: 4				
Processor cloc	ck control register	PCC = 0, 2, 3 can be used	PCC = 0 to 3 can be used				
(PCC)							
Supply voltage		$V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$	V _{DD} = 2.2 to 5.5 V				
Operating ambient temperature		$T_A = -40 \text{ to } +85^{\circ}\text{C}$					
Package		42-pin plastic shrink DIP (600 mil, 1.778-mm pitch)					
		• 44-pin plastic QFP (10 × 10 mm, 0.8-mm pitch)					

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD75P0016. The 75XL series uses a common relocatable assembler, in combination with a device file matching each machine.

RA75X relocatable assembler	Host machine			Part number
		OS	Supply medium	(product name)
	PC-9800 series	MS-DOS TM	3.5" 2HD	μS5A13RA75X
		(Ver.3.30 to Ver.6.2 Note		
	IBM PC/AT™	Refer to OS for	3.5" 2HC	μS7B13RA75X
	or compatible	IBM PCs		

Device file	Host machine			Part number
		OS	Supply medium	(product name)
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13DF750008
		(Ver.3.30 to Ver.6.2 Note		
	IBM PC/AT	Refer to OS for	3.5" 2HC	μS7B13DF750008
	or compatible	IBM PCs		

Note Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swap function, but it does not work with this software.

Remark The operation of the assembler and device file is guaranteed only on the above host machines and OSs.

PROM Write Tools

Hardware	PG-1500	A stand-alone system can be configured of a single-chip microcomputer with on-chip PROM when connected to an auxiliary board (companion product) and a programmer adapter (separately sold). Alternatively, a PROM programmer can be operated on a host machine for programming. In addition, typical PROMs in capacities ranging from 256 K to 4 M bits can be programmed.				
	PA-75P008CU	This is a PROM prog	rammer adapter for the 00.	μPD75P0016CU/GB.	It can be used when	
	PA-75P0016GB	This is a PROM programmer adapter for the μ PD75P0016GB-3BS-MTX. It can be used when connected to a PG-1500.				
Software	PG-1500 controller	Establishes serial and parallel connections between the PG-1500 and a host machine for host-machine control of the PG-1500.				
		Host machine			Part number	
			OS	Supply medium	(product name)	
		PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13PG1500	
		(Ver.3.30 to Ver.6.2 Note				
		IBM PC/AT Refer to OS for 3.5" 2HD μS7B13PG1500				
		or compatible	IBM PCs			

Note Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swapping function, but it does not work with this software.

Remark Operation of the PG-1500 controller is guaranteed only on the above host machine and OSs.

Debugging Tools

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the μ PD75P0016. Various system configurations using these in-circuit emulators are listed below.

Hardware	The IE-75000-R is an in-circuit emulator to be used for hardware and software debended development of application systems that use 75X or 75XL Series products. For of the μPD750008 subseries, the IE-75000-R is used with a separately sold emulator to be used for hardware and software debended for the μPD750008 subseries, the IE-75000-R is used with a separately sold emulation probe EP-75008CU-R or EP-75008GB-R. These products can be applied for highly efficient debugging when connected to a and PROM programmer. The IE-75000-R can include a connected emulation board (IE-75000-R-EM).					acts. For development old emulation board IE-
	IE-75001-R The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging development of application systems that use 75X or 75XL Series products. The IE-7500 used with a separately sold emulation board (IE-75300-R-EM) and emulation prob 75008CU-R or EP-75008GB-R. These products can be applied for highly efficient debugging when connected to a host material and PROM programmer.					cts. The IE-75001-R is emulation probe EP-
	IE-7	75300-R-EM		board for evaluating a combination with the IE		
	EP-	75008CU-R	This is an emulation probe for the μ PD75P0016CU. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.			
	EP-	75008GB-R	This is an emulation probe for the μ PD75P0016GB.			
		EV-9200G-44	When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM. It includes a 44-pin conversion socket (EV-9200G-44) to facilitate connections with various target systems.			
Software	IE c	control program		rol the IE-75000-R or IE- 75001-R via an RS-232-0		ine when connected to
			Host machine			Part number
				OS	Supply medium	(product name)
			PC-9800 series	MS-DOS	3.5" 2HD	μS5A13IE75X
				(Ver.3.30 to Ver.6.2 Note 2		
			IBM PC/AT	Refer to OS for	3.5" 2HC	μS7B13IE75X
			or compatible	IBM PCs		

- **Notes 1.** This is a service part provided for maintenance purpose only.
 - 2. Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swapping function, but it does not work with this software.

Remarks 1. Operation of the IE control program is guaranteed only on the above host machine and OSs.

2. The μ PD75000 subseries consists of the μ PD750004, 750006, 750008 and 75P00016.

OS for IBM PCs

The following operating systems for the IBM PC are supported.

os	Version
PC DOS™	Ver.3.1 to Ver.6.3
	J6.1/VNote to J6.3/VNote
MS-DOS	Ver.5.0 to Ver.6.22
	5.0/V ^{Note} to J6.2/V ^{Note}
IBM DOS™	J5.02/V ^{Note}

Note Supports English version only.

Caution Ver 5.0 and above include a task swapping function, but this software is not able to use that function.

★ APPENDIX C. RELATED DOCUMENTS

Some of the following related documents are preliminary. This document, however, is not indicated as preliminary.

Device Related Documents

Document name	Document No.		
Document name	Japanese	English	
μPD750004, 750006, 750008, 750004(A), 750006(A), 750008(A) Data Sheet	U10738J	U10738E	
μPD75P0016 Data Sheet	U10328J	This document	
μPD750008 User's Manual	U10740J	U10740E	
μPD750008, 750108 Instruction List	U11456J	_	
75XL Series Selection Guide	U10453J	U10453E	

Development Tool Related Documents

Document name			Document No.	
			Japanese	English
Hardware	IE-75000 R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	U11354E
	EP-750008CU-R User's Manual		EEU-699	EEU-1317
	EP-750008GB-R User's Manual		EEU-698	EEU-1305
	PG-1500 User's Manual		U11940J	U11940E
Software	RA75X Assembler Package	Operation	U12622J	U12622E
	User's Manual	Language	U12385J	U12385E
	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) Base	EEU-704	EEU-1291
		IBM PC Series (PC DOS) Base	EEU-5008	U10540E

Other Documents

Document name	Document No.	
Document name	Japanese	English
SEMICONDUCTOR SELECTION GUIDE Products & Package (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices Electrostatic Discharge (ESD)	C11892J	C11892E
Guide for Products Related to Microcomputer : Other Companies	C11416J	_

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES -

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

NEC **μPD75P0016**

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH

Santa Clara, California Tel: 408-588-6000 800-366-9782

Duesseldorf, Germany Tel: 0211-65030

• Sucursal en España Madrid, Spain

Tel: 091-504 27 87

• Succursale Française Vélizy-Villacoublay, France

Tel: 01-30-675800

• Filiale Italiana

Milano, Italy Tel: 02-66 75 41

• Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-2654010

Tyskland Filial

Taeby, Sweden Tel: 08-63 87 200

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd.

Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 6253-8311

J05.6

QTOP is a trademark of NEC Corporation.

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).