

CY7C1385D

18-Mbit (512 K × 32) Flow-Through SRAM

Features

- Supports 133 MHz bus operations
- 512 K × 32 common I/O
- 3.3 V core power supply (V_{DD})
- 2.5 V or 3.3 V I/O supply (V_{DDQ})
- Fast clock-to-output time □ 6.5 ns (133 MHz version)
- Provides high performance 2-1-1-1 access rate
- User selectable burst counter supporting Intel Pentium interleaved or linear burst sequences
- Separate processor and controller address strobes
- Synchronous self-timed write
- Asynchronous output enable
- CY7C1385D is available in JEDEC-standard Pb-free 100-pin TQFP package
- ZZ sleep mode option

Functional Description

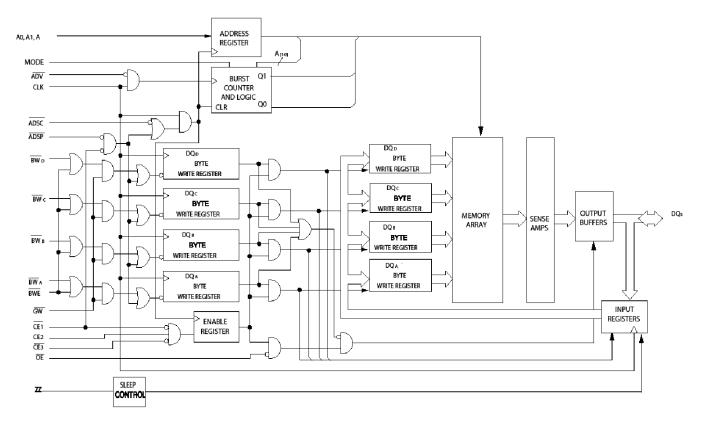
The CY7C1385D is a 3.3 V, 512 K × 32 synchronous flow through SRAMs, designed to interface with high speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 6.5 ns (133 MHz version). A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access. All synchronous inputs are gated by registers controlled by a positive edge triggered clock input (CLK). The synchronous inputs include <u>all</u> addresses, all data inputs, address pipelining chip enable (\overline{CE}_1), de<u>pth-expansion</u> chip <u>enables</u> (\overline{CE}_2 and \overline{CE}_3), burst control inputs (ADSC, ADSP, and ADV), write enables (\overline{BW}_x , and \overline{BWE}), and global write (\overline{GW}). Asynchronous inputs include the output enable (\overline{OE}) and the ZZ pin.

The CY7C1385D allows interleaved or linear burst sequences, selected by the MODE input pin. A HIGH selects an interleaved burst sequence, while a LOW selects a linear burst sequence. Burst accesses can be initiated with the processor address strobe (ADSP) or the cache controller address strobe (ADSC) inputs. Address advancement is controlled by the address advancement (ADV) input.

Addresses and chip enables are registered at rising edge of clock when address strobe processor (ADSP) or address strobe controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the advance pin (ADV).

CY7C1385D operates from a +3.3 V core power supply while all outputs operate with a +2.5 V or +3.3 V supply. All inputs and outputs are JEDEC-standard and JESD8-5-compatible.

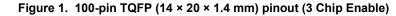
For a complete list of related resources, click here.


Selection Guide

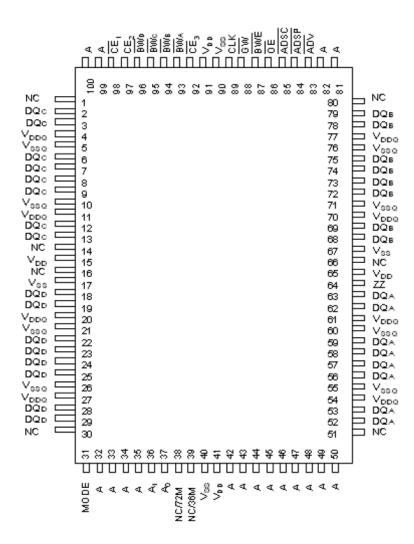
Description	133 MHz	Unit
Maximum Access Time	6.5	ns
Maximum Operating Current	210	mA
Maximum CMOS Standby Current	70	mA

198 Champion Court

Logic Block Diagram – CY7C1385D


Contents

Pin Configurations	4
Pin Definitions	5
Functional Overview	6
Single Read Accesses	6
Single Write Accesses Initiated by ADSP	
Single Write Accesses Initiated by ADSC	
Burst Sequences	
Sleep Mode	
Interleaved Burst Address Table	
Linear Burst Address Table	
ZZ Mode Electrical Characteristics	7
Truth Table	8
Truth Table for Read/Write	
Maximum Ratings	
Operating Range	
Neutron Soft Error Immunity	
Electrical Characteristics	
Capacitance	
Thermal Resistance	


AC Test Loads and Waveforms Switching Characteristics	13
Timing Diagrams	
Ordering Information	18
Ordering Code Definitions	18
Package Diagrams	19
Acronyms	
Document Conventions	20
Units of Measure	20
Document History Page	21
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	

Pin Configurations

CY7C1385D (512 K × 32)

Pin Definitions

Name	I/O	Description
A ₀ , A ₁ , A	Input Synchronous	Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW, and \overline{CE}_1 , CE_2 , and \overline{CE}_3 are sampled active. A _[1:0] feed the 2-bit counter.
$\frac{\overline{BW}}{\overline{BW}}_{A}, \frac{\overline{BW}}{\overline{BW}}_{B}, \\ \overline{BW}_{C}, \overline{BW}_{D}$	Input Synchronous	Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK.
GW	Input Synchronous	Global write enable input, active LOW . When asserted LOW on the rising edge of CLK, a global write is conducted (all bytes are written, regardless of the values on $\overline{BW}_{[A:D]}$ and \overline{BWE}).
CLK	Input Clock	Clock input . Used to capture all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW, during a burst operation.
CE ₁	Input Synchronous	Chip enable 1 input, active LOW . Sampled on the rising edge of CLK. Used in conjunction with CE_2 and CE_3 to select or deselect the device. ADSP is ignored if CE_1 is HIGH. \overline{CE}_1 is sampled only when a new external address is loaded.
CE ₂	Input Synchronous	Chip_enable 2 input, active HIGH . Sampled on the rising edge of CLK. Used in conjunction with \overline{CE}_1 and \overline{CE}_3 to select or deselect the device. CE_2 is sampled only when a new external address is loaded.
CE ₃	Input Synchronous	Chip enable 3 input, active LOW . Sampled on the rising edge of CLK. Used in conjunction with \overline{CE}_1 and CE_2 to select or deselect the device. \overline{CE}_3 is sampled only when a new external address is loaded.
OE	Input Asynchronou s	Output enable, asynchronous input, active LOW . Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tristated, and act as input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.
ADV	Input Synchronous	Advance input signal. Sampled on the rising edge of CLK. When asserted, it automatically increments the address in a burst cycle.
ADSP	Input Synchronous	Address strobe from processor, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. $A_{[1:0]}$ are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when \overline{CE}_1 is deasserted HIGH.
ADSC	Input Synchronous	Address strobe from controller, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.
BWE	Input Synchronous	Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write.
ZZ	Input Asynchronou s	ZZ sleep input . This active HIGH input places the device in a non time critical sleep condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an internal pull down.
DQ _s	I/O Synchronous	Bidirectional data I/O lines . As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by \overline{OE} . When \overline{OE} is asserted LOW, the pins behave as outputs. When HIGH, DQ _s are placed in a tristate condition. The outputs are automatically tristated during the data portion of a write sequence, during the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of \overline{OE} .
MODE	Input Static	Selects burst order . When tied to GND selects linear burst sequence. When tied to V _{DD} or left floating selects interleaved burst sequence. This is a strap pin and must remain static during device operation. Mode pin has an internal pull-up.
V _{DD}	Power Supply	Power supply inputs to the core of the device.

Pin Definitions (continued)

Name	I/O	Description			
V _{DDQ}	I/O Power Supply	Power supply for the I/O circuitry.			
V _{SS}	Ground	Ground for the core of the device.			
V _{SSQ}	I/O Ground	Ground for the I/O circuitry.			
NC	_	No connects . Not internally connected to the die. 36M, 72M, 144M, 288M, 576M, and 1G are address expansion pins and are not internally connected to the die.			
V _{SS} /DNU	Ground/DNU	This pin can be connected to ground or can be left floating.			

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{CDV}) is 6.5 ns (133 MHz device).

CY7C1385D supports secondary cache in systems using a linear or interleaved burst sequence. The interleaved burst order supports Pentium and i486 processors. The linear burst sequence is suited for processors that use a linear burst sequence. The burst order is user selectable, and is determined by sampling the MODE input. <u>Accesses can be initiated with the processor address strobe (ADSP) or the controller address strobe (ADSC)</u>. Address advancement through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access.

Byte write operations are qualified with the byte write enable (\underline{BW}_E) and byte write select (\overline{BW}_X) inputs. A global write enable (GW) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry.

Three synchronous chip selects ($\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, $\overline{\text{CE}}_3$) and an asynchronous output enable ($\overline{\text{OE}}$) provide for easy bank selection and output tristate control. ADSP is ignored if $\overline{\text{CE}}_1$ is HIGH.

Single Read Accesses

A single read access is initiated when the <u>following</u> conditions are satisfied at <u>clock</u> rise: (1) CE_1 , CE_2 , and CE_3 are all asserted active, and (2) <u>AD</u>SP or ADSC is asserted LOW (if the access is initiated by ADSC, the write inputs must be deasserted during this first cycle). The address presented to the address inputs is latched into the address register and the burst counter and/or control logic, and later presented to the memory core. If the OE input is asserted LOW, the requested data is available at the data outputs with a maximum to t_{CDV} after clock rise. ADSP is ignored if CE₁ is HIGH.

Single Write Accesses Initiated by ADSP

This access is initiated when the following conditions are satisfied at clock rise: (1) \overline{CE}_1 , \overline{CE}_2 , \overline{CE}_3 are all asserted active, and (2) ADSP is asserted LOW. The addresses presented are loaded into the address register and the burst inputs (GW, BW_E, and BW_X) are ignored during this first clock cycle. If the write inputs are asserted active (see Truth Table for Read/Write on

page 9 for appropriate states that indicate a write) on the next clock rise, the appropriate data is latched and written into the device. Byte writes are allowed. All I/O are tristated during a byte write. As this is a common I/O device, the asynchronous OE input signal must be deasserted and the I/O must be tristated prior to the presentation of data to DQs. As a safety precaution, the data lines are tristated when a write cycle is detected, regardless of the state of OE.

Single Write Accesses Initiated by ADSC

This write access is initiated when the following conditions are satisfied at <u>clock</u> rise: (1) \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are all asserted active, (2) ADSC is asserted LOW, (3) <u>ADSP</u> is deasserted HIGH, and (4) the write input signals (GW, BWE, and BW_X) indicate a write access. ADSC is ignored if ADSP is active LOW.

The addresses presented are loaded into the address register and the burst counter, the control logic, or both, and delivered to the memory core The information presented to $DQ_{[A:D]}$ is written into the specified address location. Byte writes are allowed. All I/O are tristated when a write is detected, even a byte write. Because this is a common I/O device, the asynchronous \overline{OE} input signal must be deasserted and the I/O must be tristated prior to the presentation of data to DQ_s . As a safety precaution, the data lines are tristated when a write cycle is detected, regardless of the state of \overline{OE} .

Burst Sequences

CY7C1385D provides an on-chip two-bit wraparound burst counter inside the SRAM. The burst counter is fed by $A_{[1:0]}$, and can follow either a linear or interleaved burst order. The burst order is determined by the state of the MODE input. A LOW on MODE selects a linear burst sequence. A HIGH on MODE selects an interleaved burst order. Leaving MODE unconnected causes the device to default to a interleaved burst sequence.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation sleep mode. Two clock cycles are required to enter into or exit from this sleep mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the sleep mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the sleep mode. CE₁, CE₂, CE₃, ADSP, and ADSC must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW.

Interleaved Burst Address Table

(MODE = Floating or V_{DD})

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Address Table

(MODE = GND)

First Address A1:A0	Second Address A1:A0	Address Address	
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
I _{DDZZ}	Sleep mode standby current	$ZZ \ge V_{DD} - 0.2 V$	-	80	mA
t _{ZZS}	Device operation to ZZ	$ZZ \ge V_{DD} - 0.2 V$	_	2t _{CYC}	ns
t _{ZZREC}	ZZ recovery time	ZZ <u>≤</u> 0.2 V	2t _{CYC}	-	ns
t _{ZZI}	ZZ active to sleep current	This parameter is sampled	_	2t _{CYC}	ns
t _{RZZI}	ZZ inactive to exit sleep current	This parameter is sampled	0	-	ns

Truth Table

The truth table for CY7C1385D follows. [1, 2, 3, 4, 5]

Cycle Description	Address Used	CE ₁	CE2	CE ₃	ZZ	ADSP	ADSC	ADV	WRITE	OE	CLK	DQ
Deselected Cycle, Power Down	None	Н	Х	Х	L	Х	L	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power Down	None	L	L	Х	L	L	Х	Х	х	Х	L–H	Tri-State
Deselected Cycle, Power Down	None	L	Х	Н	L	L	Х	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power Down	None	L	L	Х	L	Н	L	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power Down	None	Х	Х	Х	L	Н	L	Х	Х	Х	L–H	Tri-State
Sleep Mode, Power Down	None	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Tri-State
Read Cycle, Begin Burst	External	L	Н	L	L	L	Х	Х	Х	L	L–H	Q
Read Cycle, Begin Burst	External	L	Н	L	L	L	Х	Х	Х	Н	L–H	Tri-State
Write Cycle, Begin Burst	External	L	Н	L	L	Н	L	Х	L	Х	L–H	D
Read Cycle, Begin Burst	External	L	Н	L	L	Н	L	Х	Н	L	L–H	Q
Read Cycle, Begin Burst	External	L	Н	L	L	Н	L	Х	Н	н	L–H	Tri-State
Read Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	Н	L	L–H	Q
Read Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	Н	Н	L–H	Tri-State
Read Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	Н	L	L–H	Q
Read Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	Н	Н	L–H	Tri-State
Write Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	L	Х	L–H	D
Write Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	L	Х	L–H	D
Read Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	Н	L	L–H	Q
Read Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	Н	Н	L–H	Tri-State
Read Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	Н	L	L–H	Q
Read Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	Н	Н	L–H	Tri-State
Write Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	L	Х	L–H	D
Write Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	L	Х	L–H	D

Notes

- 1.
- 2.
- 3.
- The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BWX. Write may occur only on subsequent clocks after the remainder of the write optimum and is not sampled with the outputs to tristate. \overline{OE} is a don't care for the remainder of the write optimum and is not sampled write optimum and is not sampled with the are tricted when \overline{OE} is a don't care for the remainder of the write optimum and is not sampled write optimum and is not sampled with the outputs to tristate. \overline{OE} is a don't care for the remainder of the write cycle. 4.
- 5. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tristate when OE is inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).

Truth Table for Read/Write

The truth table for CY7C1385D read/write follows.

Function (CY7C1385D)	GW	BWE	BWD	BW _C	BWB	BWA
Read	Н	Н	Х	Х	Х	Х
Read	Н	L	Н	Н	Н	Н
Write Byte A (DQ _A)	Н	L	Н	Н	Н	L
Write Byte B(DQ _B)	н	L	Н	Н	L	Н
Write Bytes A, B (DQ _A , DQ _B)	Н	L	Н	Н	L	L
Write Byte C (DQ _C)	н	L	Н	L	Н	Н
Write Bytes C, A (DQ _C , DQ _A)	н	L	Н	L	Н	L
Write Bytes C, B (DQ _C , DQ _{B,})	Н	L	Н	L	L	Н
Write Bytes C, B, A (DQ _C , DQ _B , DQ _A)	н	L	Н	L	L	L
Write Byte D (DQ _D)	н	L	L	Н	Н	Н
Write Bytes D, A (DQ _D , DQ _A)	Н	L	L	Н	Н	L
Write Bytes D, B (DQ _D , DQ _A)	Н	L	L	Н	L	Н
Write Bytes D, B, A (DQ _D , DQ _B , DQ _A)	Н	L	L	Н	L	L
Write Bytes D, B (DQ _D , DQ _B)	Н	L	L	L	Н	Н
Write Bytes D, B, A (DQ _D , DQ _C , DQ _A)	Н	L	L	L	Н	L

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. For user guidelines, not tested.

Storage Temperature65 °C to +150 °C
Ambient Temperature with Power Applied
Supply Voltage on V_DD Relative to GND–0.3 V to +4.6 V
Supply Voltage on V_{DDQ} Relative to GND $$ –0.3 V to +V_{DD}
DC Voltage Applied to Outputs in Tri-State0.5 V to V _{DDQ} + 0.5 V
DC Input Voltage0.5 V to V _{DD} + 0.5 V
Current into Outputs (LOW)20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)> 2001 V Latch-up Current> 200 mA

Operating Range

Range	Range Ambient V _{DD}		V _{DDQ}		
Industrial	–40 °C to +85 °C	3.3 V – 5% / + 10%	2.5 V – 5% to V _{DD}		

Neutron Soft Error Immunity

Parameter	Description	Test Conditions	Тур	Max ^[6]	Unit
LSBU	Logical Single-Bit Upsets	25 °C	361	394	FIT/ Mb
LMBU	Logical Multi-Bit Upsets	25 °C	0	0.01	FIT/ Mb
SEL	Single Event Latch Up	85 °C	0	0.1	FIT/ Dev

Electrical Characteristics

Over the Operating Range

Parameter ^[7, 8]	Description	Test Conditions		Min	Max	Unit
V _{DD}	Power Supply Voltage			3.135	3.6	V
V _{DDQ}	I/O Supply Voltage	for 3.3 V I/O		3.135	V _{DD}	V
		for 2.5 V I/O		2.375	2.625	V
V _{OH}	Output HIGH Voltage	for 3.3 V I/O, I _{OH} = -4.0 mA		2.4	-	V
		for 2.5 V I/O, I _{OH} = –1.0 mA		2.0	-	V
V _{OL}	Output LOW Voltage	for 3.3 V I/O, I _{OL} = 8.0 mA		-	0.4	V
		for 2.5 V I/O, I _{OL} = 1.0 mA		-	0.4	V
V _{IH}	Input HIGH Voltage [7]	for 3.3 V I/O		2.0	V _{DD} + 0.3 V	V
		for 2.5 V I/O		1.7	V _{DD} + 0.3 V	V
V _{IL}	Input LOW Voltage [7]	for 3.3 V I/O		-0.3	0.8	V
		for 2.5 V I/O		-0.3	0.7	V
I _X	Input Leakage Current except ZZ and MODE	$GND \le V_I \le V_{DDQ}$		-5	5	μA
	Input Current of MODE	Input = V _{SS}		-30	_	μA
		Input = V _{DD}		-	5	μA
	Input Current of ZZ	Input = V _{SS}		-5	_	μA
		Input = V _{DD}		-	30	μA
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{DD,}$ Output Disable	ed	-5	5	μA
I _{DD}	V _{DD} Operating Supply Current	V _{DD} = Max, I _{OUT} = 0 mA, f = f _{MAX} = 1/t _{CYC}	7.5 ns cycle, 133 MHz	_	210	mA

Notes

6. No LMBU or SEL events occurred during testing; this column represents a statistical c2, 95% confidence limit calculation. For more details refer to Application Note AN54908 – Accelerated Neutron SER Testing and Calculation of Terrestrial Failure Rates. 7. Overshoot: $V_{IH(AC)} < V_{DD} + 1.5 V$ (pulse width less than $t_{CYC}/2$), undershoot: $V_{IL(AC)} > -2 V$ (pulse width less than $t_{CYC}/2$). 8. $T_{power up}$: Assumes a linear ramp from 0 V to $V_{DD(min)}$ within 200 ms. During this time $V_{IH} < V_{DD}$ and $V_{DDQ} \le V_{DD}$.

Electrical Characteristics (continued)

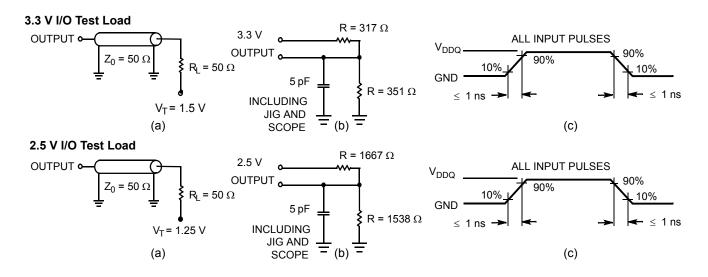
Over the Operating Range

Parameter ^[7, 8]	Description	Test Conditions		Min	Max	Unit
I _{SB1}	Automatic CE Power Down Current – TTL Inputs	$\begin{array}{l} Max \; V_{DD}, \mbox{ Device Deselected}, \\ V_{IN} \geq V_{IH} \; \mbox{or } V_{IN} \leq V_{IL}, \mbox{ f = f}_{MAX}, \\ \mbox{ inputs switching} \end{array}$	7.5 ns cycle, 133 MHz	_	140	mA
I _{SB2}	Automatic CE Power Down Current – CMOS Inputs	$\begin{array}{l} \mbox{Max } V_{DD}, \mbox{Device Deselected}, \\ V_{IN} \geq V_{DD} - 0.3 \ V \ or \ V_{IN} \leq 0.3 \ V, \\ f = 0, \ inputs \ static \end{array}$	All speeds	_	70	mA
I _{SB3}	Automatic CE Power Down Current – CMOS Inputs	$\begin{array}{l} \mbox{Max } V_{DD}, \mbox{Device Deselected}, \\ V_{IN} \geq V_{DDQ} - 0.3 \mbox{ V or } V_{IN} \leq 0.3 \mbox{ V}, \\ f = f_{MAX}, \mbox{ inputs switching} \end{array}$	7.5 ns cycle, 133 MHz	_	130	mA
I _{SB4}	Automatic CE Power Down Current – TTL Inputs	$ \begin{array}{l} \text{Max } V_{DD} \text{, Device Deselected,} \\ V_{IN} \geq V_{DD} - 0.3 \text{ V or } V_{IN} \leq 0.3 \text{ V,} \\ f = 0 \text{, inputs static} \end{array} $	All Speeds	_	80	mA

Capacitance

Parameter ^[9]	Description	Test Conditions	100-pin TQFP Package	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{DD} = 3.3 V, V _{DDQ} = 2.5 V	5	pF
C _{CLK}	Clock input capacitance		5	pF
C _{IO}	Input/Output capacitance		5	pF

Thermal Resistance


Parameter ^[9]	Description	Test Conditions	100-pin TQFP Package	Unit
Θ_{JA}	0	Test conditions follow standard test methods and procedures for measuring thermal impedance, in		°C/W
Θ^{JC}	Thermal resistance (junction to case)	accordance with EIA/JESD51.	4.08	°C/W

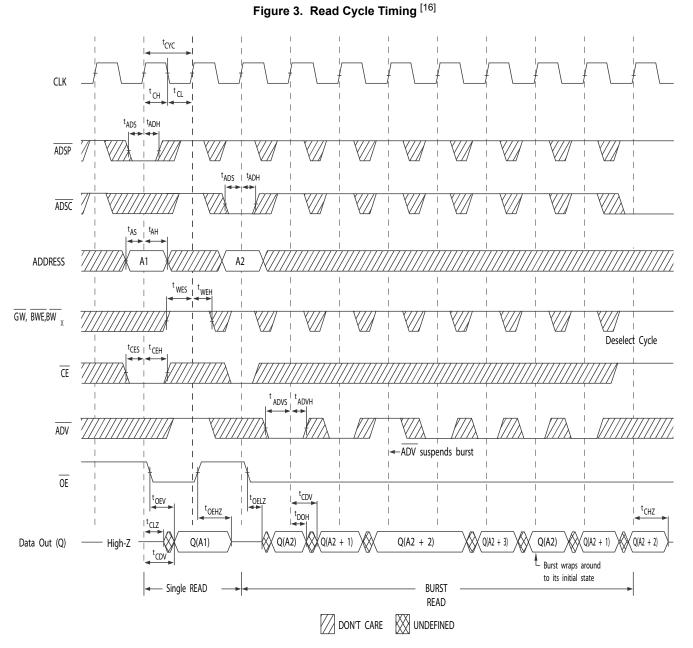
Note9. Tested initially and after any design or process change that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics

Over the Operating Range

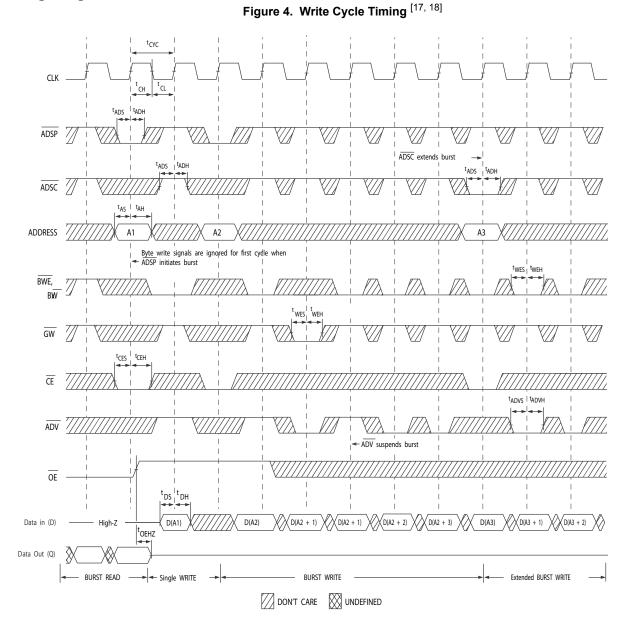
Parameter ^[10, 11]	Description	133	MHz	Unit
Parameter [10, 11]	Description	Min	Мах	
t _{POWER}	V _{DD} (typical) to the first access ^[12]	1	_	ms
Clock				
t _{CYC}	Clock cycle time	7.5	-	ns
t _{CH}	Clock HIGH	2.1	-	ns
t _{CL}	Clock LOW	2.1	-	ns
Output Times				
t _{CDV}	Data output valid after CLK rise	-	6.5	ns
t _{DOH}	Data output hold after CLK rise	2.0	-	ns
t _{CLZ}	Clock to low Z [13, 14, 15]	2.0	_	ns
t _{CHZ}	Clock to high Z ^[13, 14, 15]	0	4.0	ns
t _{OEV}	OE LOW to output valid	-	3.2	ns
t _{OELZ}	OE LOW to output low Z ^[13, 14, 15]	0	_	ns
t _{OEHZ}	OE HIGH to output high Z ^[13, 14, 15]	-	4.0	ns
Setup Times			•	
t _{AS}	Address setup before CLK rise	1.5	_	ns
t _{ADS}	ADSP, ADSC setup before CLK rise	1.5	_	ns
t _{ADVS}	ADV setup before CLK rise	1.5	_	ns
t _{WES}	GW, BWE, BW _[A:D] setup before CLK rise	1.5	_	ns
t _{DS}	Data input setup before CLK rise	1.5	_	ns
t _{CES}	Chip enable setup	1.5	_	ns
Hold Times			•	
t _{AH}	Address hold after CLK rise	0.5	_	ns
t _{ADH}	ADSP, ADSC hold after CLK rise	0.5	_	ns
t _{WEH}	GW, BWE, BW _[A:D] hold after CLK rise	0.5	_	ns
t _{ADVH}	ADV hold after CLK rise	0.5	_	ns
t _{DH}	Data input hold after CLK rise 0.5 -		_	ns
t _{CEH}	Chip enable hold after CLK rise	0.5	_	ns


Notes

10. Timing reference level is 1.5 V when V_{DDQ} = 3.3 V and is 1.25 V when V_{DDQ} = 2.5 V.
11. Test conditions shown in (a) of Figure 2 on page 12 unless otherwise noted.
12. This part has a voltage regulator internally; t_{POWER} is the time that the power needs to be supplied above V_{DD(minimum)} initially, before a read or write operation can be initiated. initiated.

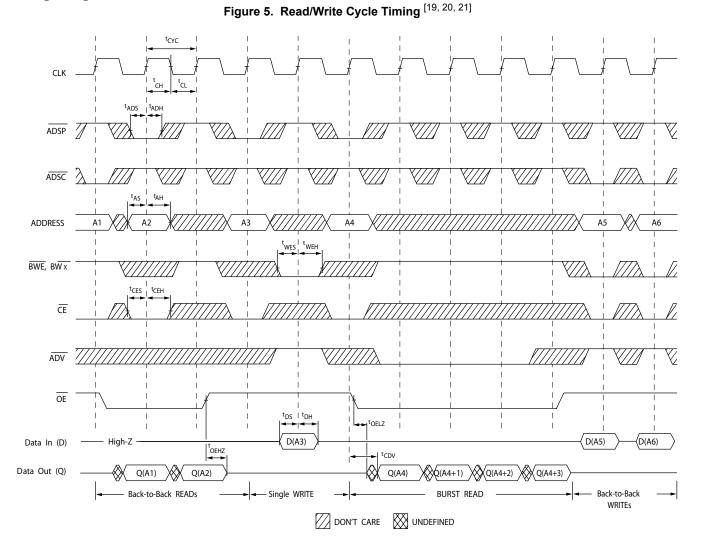
t_{CHZ}, t_{CLZ}, t_{OELZ}, and t_{OEHZ} are specified with AC test conditions shown in part (b) of Figure 2 on page 12. Transition is measured ±200 mV from steady-state voltage.
 At any given voltage and temperature, t_{OEHZ} is less than t_{OELZ} and t_{CHZ} is less than t_{CLZ} to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve high Z prior to low Z under the same system condition.
 This parameter is sampled and not 100% tested.

Timing Diagrams



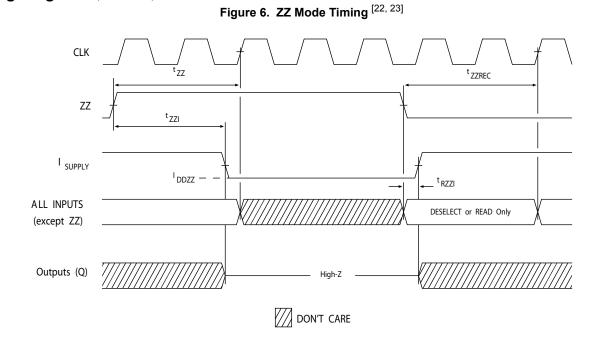
Note

16. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH.


Timing Diagrams (continued)

Notes 17. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH. 18. Full width write can be initiated by either \overline{GW} LOW; or by \overline{GW} HIGH, \overline{BWE} LOW and \overline{BW}_X LOW.

Timing Diagrams (continued)



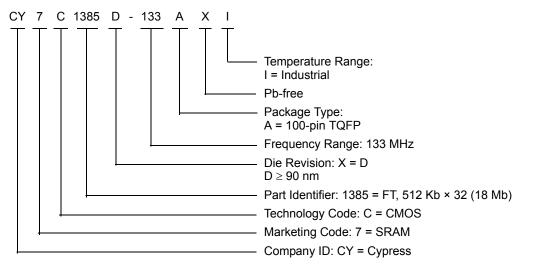
Notes

19. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH. 20. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC. 21. GW is HIGH.

Timing Diagrams (continued)

Notes

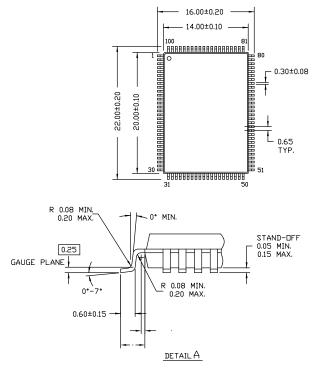
22. Device must be deselected when entering ZZ mode. See Truth Table on page 8 for all possible signal conditions to deselect the device. 23. DQs are in high Z when exiting ZZ sleep mode.

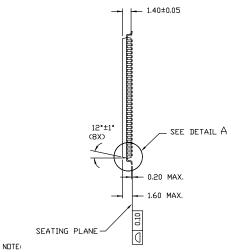


Ordering Information

Cypress offers other versions of this type of product in many different configurations and features. The below table contains only the list of parts that are currently available. For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative. Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at t http://www.cypress.com/go/datasheet/offices.

Speed (MHz)	Ordering Code	Package Diagram		Operating Range
133	CY7C1385D-133AXI	51-85050	100-pin TQFP (14 × 20 × 1.4 mm) Pb-free	Industrial


Ordering Code Definitions



Package Diagrams

1. JEDEC STD REF MS-026

- 2. BDDY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
- 3. DIMENSIONS IN MILLIMETERS

51-85050 *E

Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
EIA	Electronic Industries Alliance
I/O	Input/Output
JEDEC	Joint Electron Devices Engineering Council
LMBU	Logical Multi-Bit Upsets
LSBU	Logical Single-Bit Upsets
OE	Output Enable
SEL	Single Event Latch-up
SRAM	Static Random Access Memory
TQFP	Thin Quad Flat Pack
TTL	Transistor-Transistor Logic

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
mA	milliampere
mm	millimeter
ms	millisecond
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY7C1385D, 18-Mbit (512 K × 32) Flow-Through SRAM Document Number: 001-74016					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
**	3454705	NJY	12/04/2011	New data sheet.	
*A	3617718	PRIT / NJY	05/15/2012	Changed status from Preliminary to Final.	
*B	4585009	PRIT	12/02/2014	Updated Functional Description: Added "For a complete list of related resources, click here." at the end. Updated Timing Diagrams: Updated Figure 3, Figure 4, Figure 5, Figure 6. Updated Package Diagrams: spec 51-85050 – Changed revision from *D to *E. Updated to new template. Completing Sunset Review.	
*C	5067238	PRIT	12/29/2015	Updated to new template. Completing Sunset Review.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-74016 Rev. *C

Revised December 29, 2015

All products and company names mentioned in this document may be the trademarks of their respective holders.