

MADL-011088-DIE

Rev. V1

Features

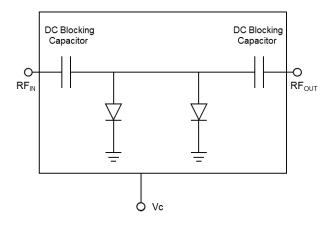
- Insertion Loss <0.5 dB
- Return Loss >18 dB
- Handles 39 dBm CW Power
- Low Flat Leakage Power <15 dBm
- Die Size: 1.78 x 0.98 mm
- RoHS* Compliant
- External DC Bias May Be Applied

Applications

- ISM/MM
- Radar
- EW

Description

The MADL-011088-DIE is an integrated AlGaAs PIN Diode limiter. It is DC de-coupled at both the input and output ports and can be used with or without DC bias applied.


The limiter DC bias can be grounded to achieve low insertion loss, typically 0.35 dB up to 12 GHz. When applying a DC bias up to 0.7 V, ultra low flat leakage of less than 14 dBm across the power range can be achieved.

The MADL-011088-DIE can limit up to 39 dBm incident CW power at room temperature. It is available in die form with a compact die dimension of 1.78×0.98 mm.

Ordering Information

Part Number	Package	
MADL-011088-DIE	Die in Gel Pack	

Functional Schematic

Pin Configuration

Pin #	Pin Name	Description		
1, 3, 4, 6	GND	Ground		
2	RF _{IN}	RF Input		
5	RFout	RF Output		
7	Vc	Limiter DC Bias		

1

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MADL-011088-DIE

Rev. V1

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	$P_{IN} = -10 \text{ dBm}, V_{C} = 0 \text{ V}$ $P_{IN} = -10 \text{ dBm}, V_{C} = 0.7 \text{ V}$	dB	—	0.35 0.45	0.6 0.7
Input Return Loss	P _{IN} = -10 dBm, V _C = 0 V	dB	16	21	_
Output Return Loss	P _{IN} = -10 dBm, V _C = 0 V	dB	16	21	_
CW Incident Power	—	dBm	_	39	_
CW Flat Leakage	$P_{IN} > 32 \text{ dBm}, V_C = 0 \text{ V}$ $P_{IN} > 25 \text{ dBm}, V_C = 0.7 \text{ V}$	dBm	_	17.5 12.0	19 14
Spike Leakage Power	P_{IN} = 40 dBm, 100 μs, 1% DC, V _C = 0 V, 12 GHz P_{IN} = 40 dBm, 100 μs, 1% DC, V _C = 0.7 V, 12 GHz	dBm	—	21.4 19.0	_
Recovery Time (1 dB Insertion Loss)	P _{IN} = 40 dBm, 100 μs, 1% DC, V _C = 0 V, 12 GHz P _{IN} = 40 dBm, 100 μs, 1% DC, V _C = 0.7 V, 12 GHz	ns	_	50 95	_
Input IP3	10 MHz Offset, P_{IN} /tone = 0 dBm, V_C = 0 V, 12 GHz 10 MHz Offset, P_{IN} /tone = 0 dBm, V_C = 0.7 V, 12 GHz	dBm	_	38 25	_

Absolute Maximum Ratings^{1,2}

Parameter	Absolute Maximum		
Incident CW RF Power @ +85°C	35		
Bias Voltage	1 V		
Junction Temperature ³	+150°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-55°C to +150°C		

1. Exceeding any one or combination of these limits may cause permanent damage to this device.

MACOM does not recommend sustained operation near these survivability limits.

 Operating at nominal conditions with T_J ≤ +150°C will ensure MTTF > 1 x 10⁶ hours.

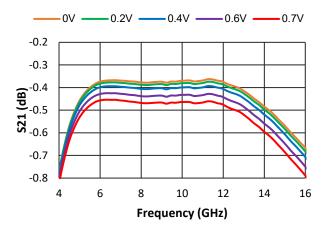
Handling Procedures

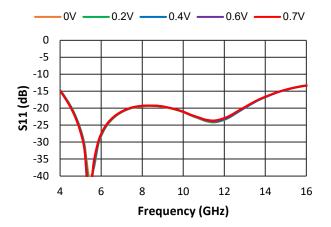
The protective polymer coating on the active areas of the die provides scratch and impact protection, particularly for the metal air bridge, which contacts the diode's anode. Die should primarily be handled with vacuum pickup tools, or alternatively with plastic tweezers.

Static Sensitivity

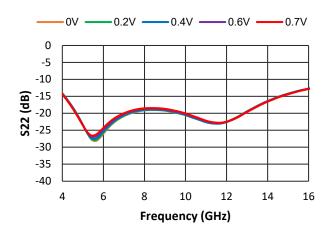
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling HBM Class 1B devices.

For further information and support please visit: <u>https://www.macom.com/support</u>

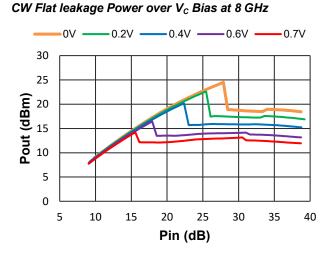

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

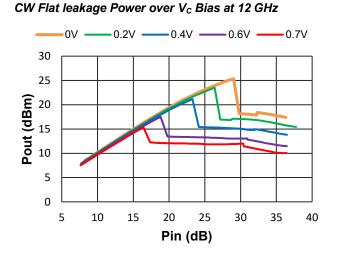

MADL-011088-DIE Rev. V1

Typical Small-Signal Performance, On-Wafer: $T_A = 25^{\circ}C$, $Z_0 = 50 \Omega$

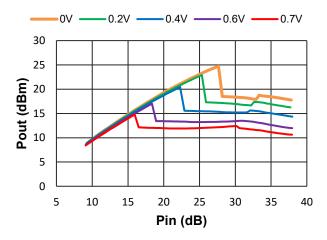

Insertion Loss over V_c Bias

Input Return Loss over Vc Bias

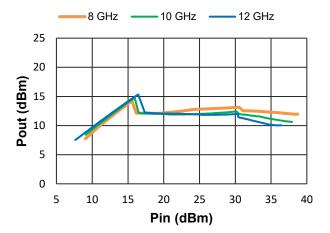

Output Return Loss over Vc Bias



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

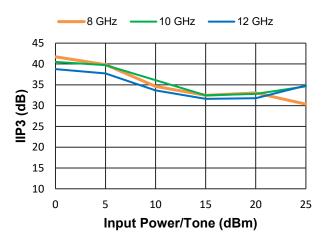


Typical RF Power Performance, Die On-Board: $T_A = 25^{\circ}C$, $Z_0 = 50 \Omega$

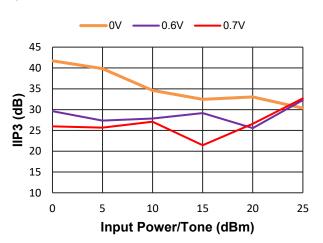


CW Flat leakage Power over V_c Bias at 10 GHz

CW Flat leakage Power over Frequency at $V_c = 0.7 V$

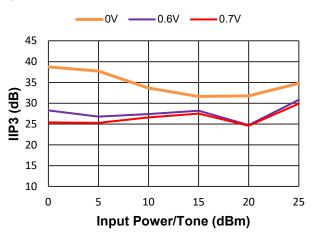


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Typical RF Power Performance, Die On-Board: $T_A = 25^{\circ}C$, $Z_0 = 50 \Omega$

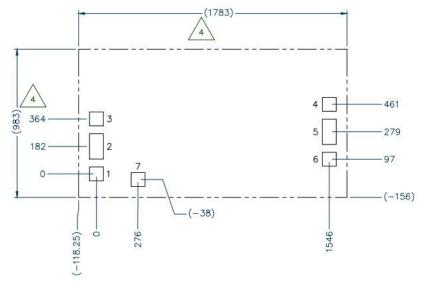
Input IP3 over Frequency at $V_c = 0 V$


Input IP3 over Vc Bias at 8 GHz

Input IP3 over V_c Bias at 10 GHz

0V ----- 0.6V 0.7V 45 40 35 IIP3 (dB) 30 25 20 15 10 10 0 5 15 20 25 Input Power/Tone (dBm)

Input IP3 over V_c Bias at 12 GHz


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MADL-011088-DIE

Rev. V1

Die Outline Drawing

B	OND PAD	DIM (m)
PAD	χ (μm)	Υ (μm)	REF. DES.
1,3,4,6	100	100	GND
2	100	180	RFINPUT
5	100	180	RFOUTPUT
7	100	100	Vc

- NOTES:
 1. UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHOWN ARE μm WITH A TOLERANCE OF ±5μm.
 2. DIE THICKNESS IS 100 ±10μm
 3. BOND PAD/BACKSIDE METALLIZATION: GOLD.

OVERALL DIMENSIONS ARE FINAL, POST-SINGULATION, TOLERANCE $\pm 10\,\mu\text{m}$ EACH DIMENSION. 4.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

6

MADL-011088-DIE Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

⁷

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.