
PHOTONIC Silicon Photodiode, Blue Enhanced Solderable Chips

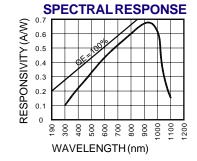
Photoconductive Type PDB-C613 Photovoltaic Type PDB-V613

FEATURES

- Blue enhanced
- Photovoltaic type
- Photoconductive type
- High quantum efficiency

DESCRIPTION: Low cost blue enhanced planar diffused silicon solderable photodiode. The **PDB-V613** cell is designed

for low noise, photovoltaic applications. The **PDB-C613** cell is designed for low capacitance, high speed, photoconductive


operation. They are available bare, PVC or buss wire leads.

APPLICATIONS

- Optical encoder
- Position sensor
- Industrial controls
- Instrumentation

ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted)

SYMBOL	PARAMETER .	PDB-	C613	PDB-	V613	UNITS	
OTWIDOL		MIN	MAX	MIN	MAX	014110	
VBR	Reverse Voltage		75		25	V	
T _{STG}	Storage Temperature	-40	+125	-40	+125	°C	
То	Operating Temperature Range	-40	+100	-40	+100	oC	
Ts	Soldering Temperature		+224		+224	οC	
I _L	Light Current		500		500	mA	

ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

SYMBOL	CHARACTERISTIC	TESTCONDITIONS	PDB-C613			PDB-V613			LINITO
			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Isc	Short Circuit Current	H = 100 fc, 2850 K	.90	1.0		.90	1.0		mA
ΙD	Dark Current	H = 0, V _R = 5 V*		90	180		50	100	nA
Rsн	Shunt Resistance	H = 0, V _R = 10 mV	.5	1		1	2		MΩ
TC RsH	RsH Temp. Coefficient	H = 0, V _R = 10 mV		-8			-8		%/°C
Сл	Junction Capacitance	H = 0, V _R = 5 V**		350			10000		pF
λrange	Spectral Application Range	Spot Scan	350		1100	350		1100	nm
λр	Spectral Response - Peak	Spot Scan		940			940		nm
VBR	Breakdown Voltage	I = 10 μA	25	50		5	15		V
NEP	Noise Equivalent Power	V _R = 0 V @ Peak	3.0 x 10 ⁻¹³ TYP		3.0 x 10 ⁻¹³ TYP			W/ √Hz	
tr	Response Time	RL = 1 KΩ V _R = 5 V**		50			3000		nS

 $^{{}^*}VR = 100 \text{ mV}$ on Photovoltaic type ${}^{**}VR = 0 \text{ V}$ on Photovoltaic type