

CPM2-1200-0160B

Silicon Carbide Power MOSFET C2M[™] MOSFET Technology

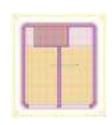
N-Channel Enhancement Mode

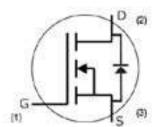
New C2M SiC MOSFET technlogy

- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitances
- Easy to Parallel and Simple to Drive
- Avalanche Ruggedness
- Resistant to Latch-Up
- Halogen Free, RoHS Compliant

Benefits

Features


- Higher System Efficiency
- Reduced Cooling Requirements
- Increased Power Density
- Increased System Switching Frequency


Applications

- Solar Inverters
- Switch Mode Power Supplies
- High Voltage DC/DC Converters
- LED Lighting Power Supplies

\mathbf{V}_{DS}	1200 V 19 A		
I _D @ 25°C			
$R_{DS(on)}$	160 mΩ		

Chip Outline

Part Number	Die Size (mm)
CPM2-1200-0160B	2.39 × 2.63

Maximum Ratings ($T_c = 25$ °C unless otherwise specified)

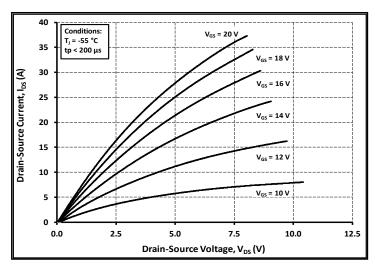
Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{DSmax}	Drain - Source Voltage	1200 V		$V_{GS} = 0 \text{ V, } I_D = 100 \mu\text{A}$	
V_{GSmax}	Gate - Source Voltage	-10/+25	-10/+25 V Absolute maximum values		
V_{GSop}	Gate - Source Voltage	-5/+20	5/+20 V Recommended operational values		
I_{D}	Continuous Drain Current	19	А	$V_{GS} = 20 \text{ V}, T_{C} = 25^{\circ}\text{C}$	
I _D		12.5		$V_{GS} = 20 \text{ V}, T_{C} = 100 ^{\circ}\text{C}$	
$I_{D(pulse)}$	Pulsed Drain Current	40 A Pulse width t _P limited by T _{jmax}			
T _J , T _{stg}	Operating Junction and Storage Temperature	-55 to +150	1 (1		
T _L	Solder Temperature	260 °C 1.6mm (0.063") from case for 10		1.6mm (0.063") from case for 10s	
T _{Proc}	Maximum Processing Temperature	325	325 °C 10 min. maximum		·

Note (1): Assumes a $R_{\theta JC} < 0.90 \text{ K/W}$

Electrical Characteristics $(T_c = 25^{\circ}C \text{ unless otherwise specified})$

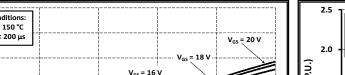
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	1200			V	V_{GS} = 0 V, I_D = 100 μA		
V	Gate Threshold Voltage	$2.4 \qquad 2.5 \qquad \qquad V_{DS} = 10V, I_{DS} = 10V $	$V_{DS} = 10V$, $I_{DS} = 2.5$ mA	Fig. 11				
$V_{GS(th)}$	Gate Tilleshold Voltage	1.8	1.9		V	$V_{DS} = 10V$, $I_{DS} = 2.5$ mA, $T_{J} = 150$ °C	rig. 11	
I_{DSS}	Zero Gate Voltage Drain Current		1	100	μΑ	$V_{DS} = 1200 \text{ V}, V_{GS} = 0 \text{ V}$		
I_{GSS}	Gate-Source Leakage Current			250	nA	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		
$R_{DS(on)}$	Drain-Source On-State Resistance		160	196	mΩ	V_{GS} = 20 V, I_D = 10 A	Fig. 4,	
· •DS(0II)	- Tam - San		290			$V_{GS} = 20 \text{ V}, I_{D} = 10 \text{A}, T_{J} = 150 ^{\circ}\text{C}$	5, 6	
g_{fs}	Transconductance		4.8	<u> </u>	S	V_{DS} = 20 V, I_{DS} = 10 A	Fig. 7	
			4.3			V_{DS} = 20 V, I_{DS} = 10 A, T_{J} = 150°C		
C _{iss}	Input Capacitance		525	ļ		$V_{GS} = 0 V$		
C_{oss}	Output Capacitance		47		pF	V _{DS} = 1000 V	Fig. 17, 18	
C_{rss}	Reverse Transfer Capacitance		4			f = 1 MHz		
E _{oss}	C _{oss} Stored Energy		25		μЈ	Vac = 25 mV	Fig. 16	
E _{AS}	Avalanche Energy, Single Pluse		600		mJ	$I_{D} = 10A, V_{DD} = 50V$		
Eon	Turn-On Switching Energy		79		$V_{DS} = 800 \text{ V}, V_{GS} = -5/20 \text{ V}, I_{D} = 10\text{A},$			
E _{OFF}	Turn Off Switching Energy		57		μĴ	$R_{G(ext)} = 2.5\Omega$, L= 256 μ H		
t _{d(on)}	Turn-On Delay Time		9			Timing relative to V _{DS}		
tr	Rise Time		11]			
$t_{\text{d(off)}}$	Turn-Off Delay Time		16		ns			
t _f	Fall Time		10			Per IEC60747-8-4 pg 83		
$R_{G(int)}$	Internal Gate Resistance		6.5		Ω	f = 1 MHz, V _{AC} = 25 mV		
Q_{gs}	Gate to Source Charge		7		V _{DS} = 800 V, V _{GS} = -5/20 V			
Q_{gd}	Gate to Drain Charge		14		nC	$I_D = 10 A$	Fig. 12	
Q_g	Total Gate Charge		34			Per IEC60747-8-4 pg 21		

Reverse Diode Characteristics


Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note	
V_{SD}	Diode Forward Voltage	3.3		V	$V_{GS} = -5 \text{ V, } I_F = 5 \text{ A}$	Fig. 8,9, 10	
		3.1			$V_{GS} = -5V, I_F = 5 A, T_J = 150 \text{ °C}$		
\mathbf{I}_{S}	Continuous Diode Forward Current		19	Α	$T_C = 25^{\circ}C$	Note 2	
t _{rr}	Reverse Recovery Time	23		ns			
Q_{rr}	Reverse Recovery Charge	105		nC	$V_{GS} = -5 \text{ V, } I_{SD} = 10 \text{ A, } V_{R} = 800 \text{ V}$ dif/dt = 3200 A/ μ s	Note 2	
I_{rrm}	Peak Reverse Recovery Current	9		Α	- dily de = 3200 γ γ μ5		

Note (2): When using SiC Body Diode the maximum recommended $V_{\mbox{\scriptsize GS}}$ = -5V

Note (3): For inductive and resistive switching data and waveforms please refer to datasheet for packaged device. Part number C2M0160120D.



Typical Performance

Conditions V_{GS} = 20 V T_J = 25 °C 35 tp < 200 μs V_{GS} = 18 V 30 Drain-Source Current, I_{DS} (A) 25 20 15 V_{GS} = 10 V 10 5 O 0.0 2.5 5.0 7.5 10.0 12.5 Drain-Source Voltage, V_{DS} (V)

Figure 1. Output Characteristics T_{J} = -55 °C

Conditions: T_J = 150 °C tp < 200 μs 35 30 Drain-Source Current, I_{DS} (A) V_{GS} = 16 V 25 20 15 10 0 2.5 5.0 10.0 12.5 0.0 Drain-Source Voltage, V_{DS} (V)

Figure 2. Output Characteristics T_J = 25 °C

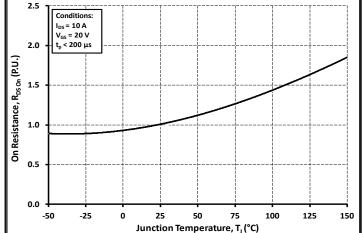


Figure 3. Output Characteristics T₁ = 150 °C

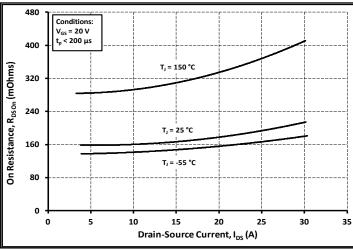


Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 4. Normalized On-Resistance vs. Temperature

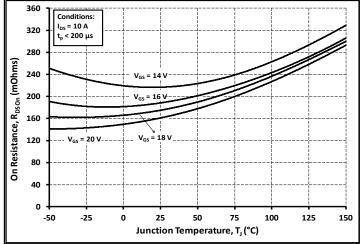
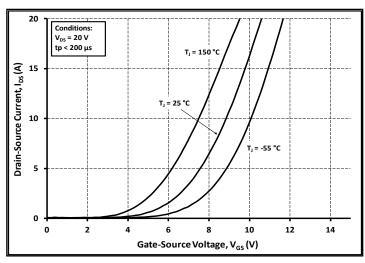



Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

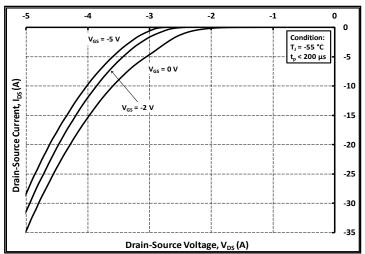
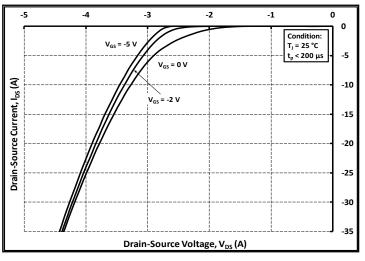



Figure 7. Transfer Characteristic for Various Junction Temperatures

Figure 8. Body Diode Characteristic at -55 °C

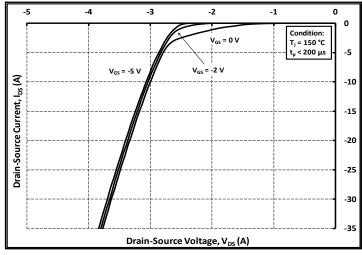
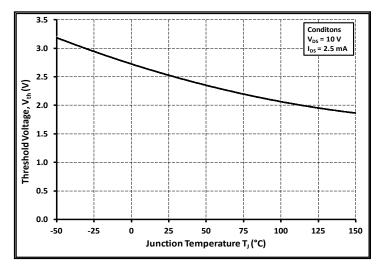



Figure 9. Body Diode Characteristic at 25 °C

Figure 10. Body Diode Characteristic at 150 °C

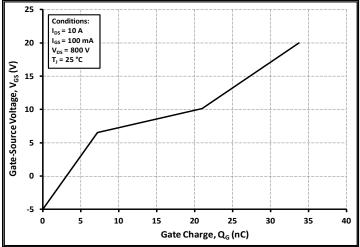
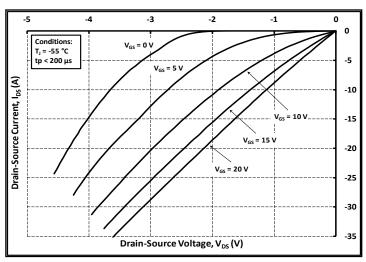



Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristics

Typical Performance

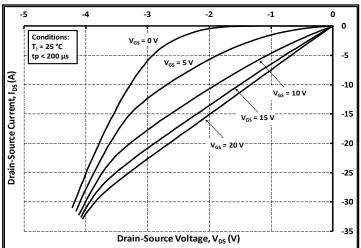
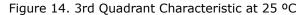
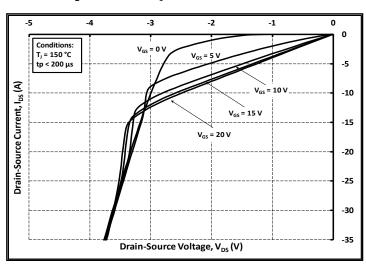




Figure 13. 3rd Quadrant Characteristic at -55 °C

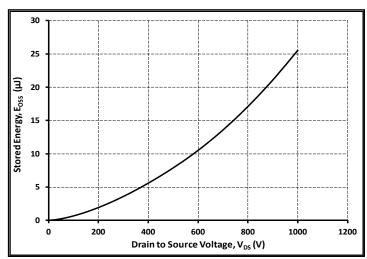
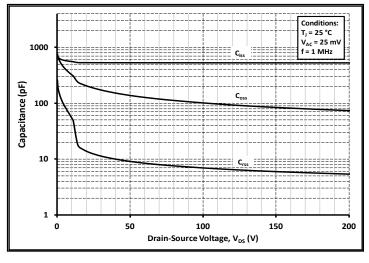



Figure 15. 3rd Quadrant Characteristic at 150 °C

Figure 16. Output Capacitor Stored Energy

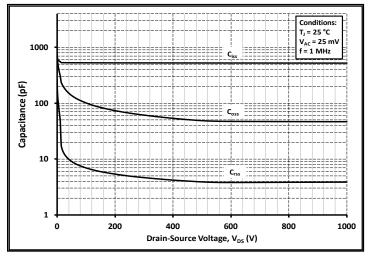
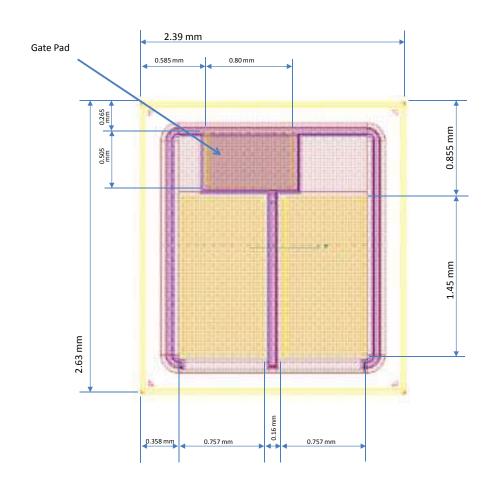


Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)


Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V)

Mechanical Parameters

Parameter	Typical Value	Unit
Die Dimensions (L x W)	2.39 × 2.63	mm
Exposed Source Pad Metal Dimensions (LxW) Each	0.757 × 1.45	mm
Gate Pad Dimensions (L x W)	0.80 × 0.505	mm
Die Thickness	180 ± 40	μm
Top Side Source metallization (Al)	4	μm
Top Side Gate metallization (Al)	4	μm
Bottom Drain metallization (Ni/Ag)	0.8 / 0.6	μm

Chip Dimensions

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems.

Related Links

- C2M PSPICE Models: www.cree.com/power
- SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power
- Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power