

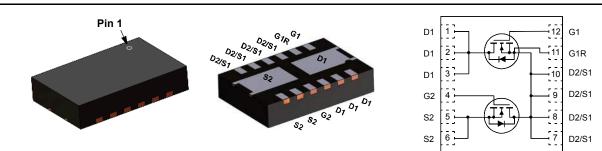
FDMD8280

Dual N-Channel Power Trench[®] MOSFET

80 V, 40 A, 8.2 mΩ

Features

- Max $r_{DS(on)}$ = 8.2 m Ω at V_{GS} = 10 V, I_D = 11 A
- Max $r_{DS(on)}$ = 11 m Ω at V_{GS} = 8 V, I_D = 9.5 A
- Ideal for flexible layout in primary side of bridge topology
- Termination is Lead-free and RoHS Compliant
- 100% UIL tested
- Kelvin High Side MOSFET drive pin-out capability



General Description

This device includes two 80V N-Channel MOSFETs in a dual Power (3.3 mm X 5 mm) package. HS source and LS Drain internally connected for half/full bridge, low source inductance package, low $r_{DS(on)}/Qg$ FOM silicon.

Applications

- Synchronous Buck : Primary Switch of Half / Full bridge converter for telecom
- Motor Bridge : Primary Switch of Half / Full bridge converter for BLDC motor
- MV POL : 48V Synchronous Buck Switch

Power 3.3 x 5

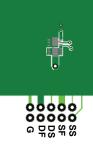
MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			80	V	
V _{GS}	Gate to Source Voltage			±20	V	
ID	Drain Current -Continuous	T _C = 25 °C		40		
	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	11	А	
	-Pulsed	(Note 4)	160			
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	150	mJ	
P _D	Power Dissipation	T _C = 25 °C	38			
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.1	W	
	Power Dissipation $T_A = 25$		(Note 1b)	1		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

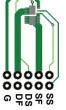
Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		3.3	
R_{\thetaJA}	R _{0JA} Thermal Resistance, Junction to Ambient (Note 1a)		60	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note	e 1b)	130	

Package Marking and Ordering Information

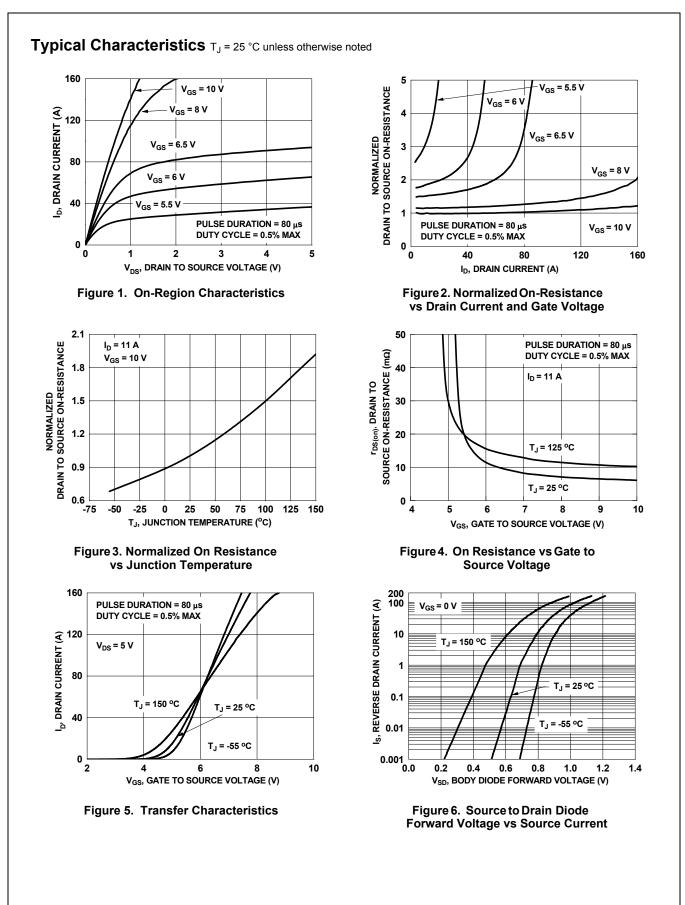

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
8280	FDMD8280	Power 3.3 x 5	13 "	12 mm	3000 units

October 2014

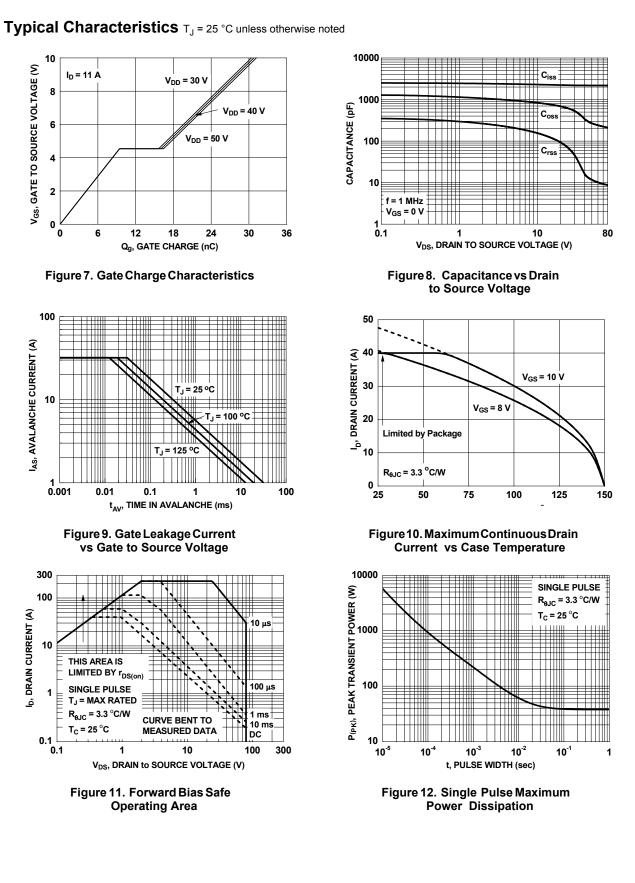

iits	FDMD8280 Dual N-Channel PowerTrench [®] MOSFET
/	
//°C A A	ual
A	z
A	Ŷ
	lan
/	nel
/°C	Po
Ω	werTre
S)Ué
	ch _®
F	Z
F F F 2	SO
	Ē
2	1

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Chara	icteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	80			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		48		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 64 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	2.0	3.0	4.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		-9		mV/°C
		V _{GS} = 10 V, I _D = 11 A		6.6	8.2	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 8 V, I _D = 9.5 A		7.5	11	mΩ
		V_{GS} = 10 V, I _D = 11 A, T _J = 125 °C		10	12.4	
9 _{FS}	Forward Transconductance	V _{DD} = 10 V, I _D = 11 A		29		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			2179	3050	pF
C _{oss}	Output Capacitance	──V _{DS} = 40 V, V _{GS} = 0 V f = 1 MHz		341	480	pF
C _{rss}	Reverse Transfer Capacitance			15	25	pF
R _g	Gate Resistance		0.1	2.7	5.4	Ω
•	Characteristics					
t _{d(on)}	Turn-On Delay Time			15	27	ns
t _r	Rise Time	V _{DD} = 40 V, I _D = 11 A		12	22	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		26	42	ns
t _f	Fall Time			8.9	18	ns
•	Total Gate Charge	V _{GS} = 0 V to 10 V		31	44	nC
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 8 V V _{DD} = 40 V		25	35	nC
Q _{gs}	Gate to Source Charge	I _D = 11 A		9.5		nC
Q _{gd}	Gate to Drain "Miller" Charge	_		6.6		nC
Drain-Sou	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 11 A$ (Note 2)		0.8	1.3	V
		V _{GS} = 0 V, I _S = 1.8 A (Note 2)		0.7	1.2	
t _{rr}	Reverse Recovery Time	L = 11.0 di/dt = 100.0 / m c		27	43	ns
Q _{rr}	Reverse Recovery Charge	— I _F = 11 A, di/dt = 100 A/μs		12	22	nC

Electrical Characteristics T_J = 25 °C unless otherwise noted

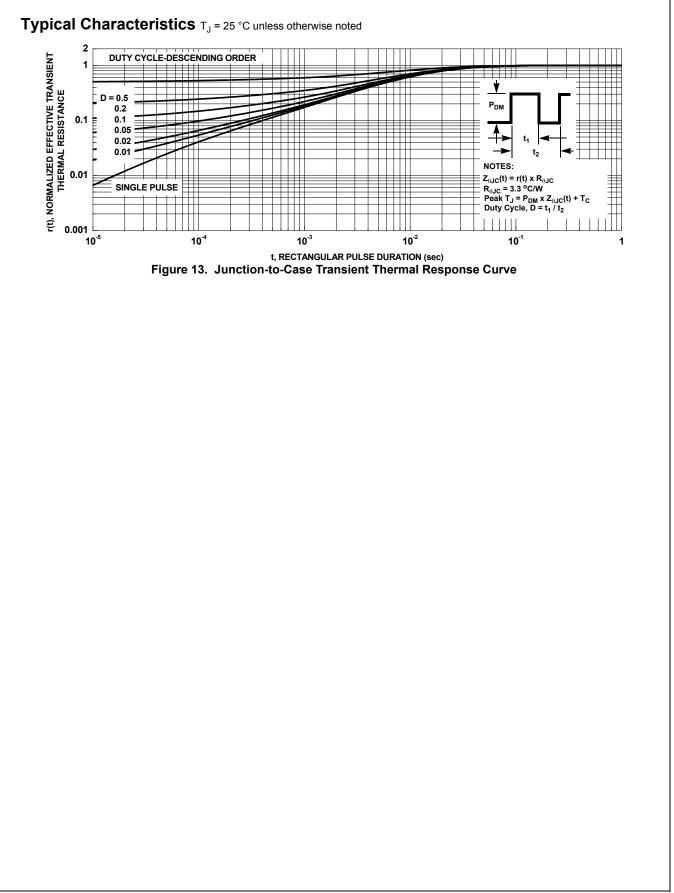


a. 60 °C/W when mounted on a 1 in² pad of 2 oz copper

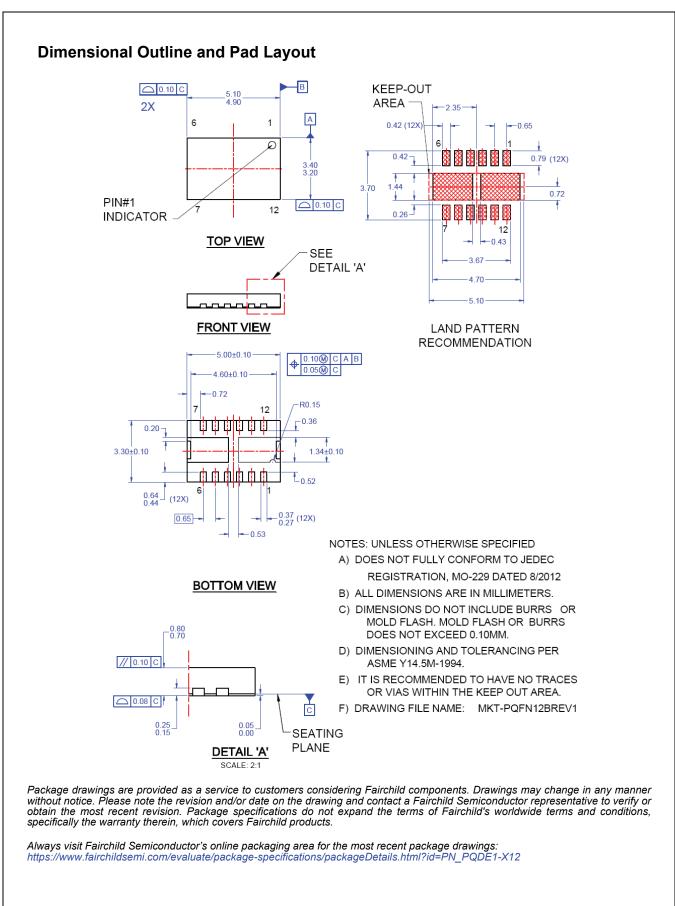


b. 130 °C/W when mounted on a minimum pad of 2 oz copper

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0 %. 3. E_{AS} of 150 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 10 A, V_{DD} = 72 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 32 A. 4. Pulse Id measured at td <= 250 μ s, refer to Fig 11 SOA graph for more details.



3


FDMD8280 Dual N-Channel PowerTrench[®] MOSFET

©2014 Fairchild Semiconductor Corporation FDMD8280 Rev.C

FDMD8280 Dual N-Channel PowerTrench[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $()_{\mathbb{R}}$

AccuPower™ Awinda® AX-CAP®+ BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ *CROSSVOLT*™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

Fairchild[®]

Fairchild Semiconductor[®] FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™ FPS™

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX[™] ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ MotionGrid[®] MTi[®] MTx® **MVN**[®] mWSaver®

PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure[™] Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

EGENERAL TinyBoost® TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPower™ TinyPower™ TinyWM™ TinyWM™ TranSiC™ TranSiC™ TraISut Detect™ TRUECURRENT®+ µSerDes™ UHC®

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ **dua**™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OptoHiT™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev.