

©2007 Fairchild Semiconductor Corporation FDB8444TS Rev. A (W)

Symbol	Parameter	Rating	s Units
V _{DSS}	Drain to Source Voltage	40	V
V _{GS}	Gate to Source Voltage	±20	V
	Drain Current Continuous (T _C = 140°C, V _{GS} = 10V)	70	
I _D	Continuous (T_{amb} = 25°C, V_{GS} = 10V, with $R_{\theta JA}$ = 43°C/W)	20	A
	Pulsed	See Figu	re 4
E _{AS}	Single Pulse Avalanche Energy (No	e 1) 439	mJ
	Power Dissipation	181	W
P _D	Derate above 25°C	1.2	W/ºC
T _{.I} , T _{STG}	Operating and Storage Temperature	-55 to +1	I75 °C

Thermal Characteristics

R_{\thetaJC}	Thermal Resistance Junction to Case	0.83	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-263, 1in ² copper pad area	43	°C/W

Package Marking and Ordering Information

Device Meridan	Devile	Destant	De el Olere	T	0
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8444TS	FDB8444TS	TO-263 5LDS	330mm	24mm	800 units

Electrical Characteristics T_{C} = 25°C unless otherwise noted

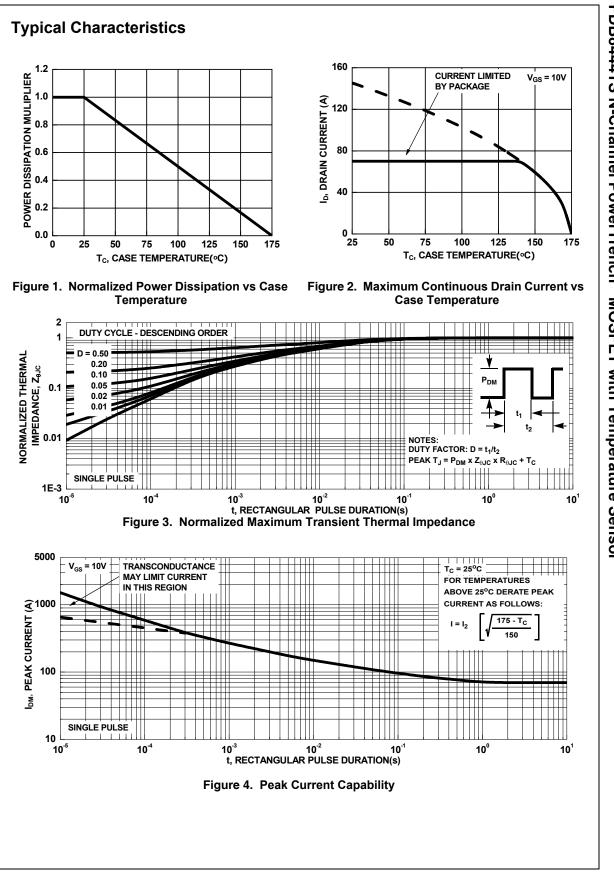
	Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
--	--------	-----------	-----------------	-----	-----	-----	-------

Off Characteristics

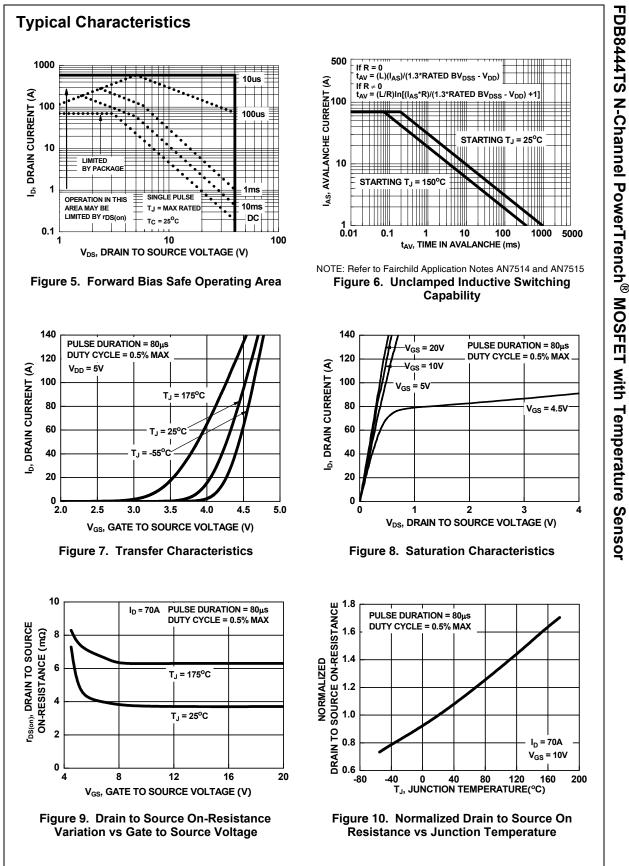
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS}	$I_{D} = 250 \mu A, V_{GS} = 0V$		-	-	V
1	Zero Gate Voltage Drain Current	V _{DS} = 32V,		-	-	1	
IDSS Zero Gale Volta	Zero Gale Vollage Drain Current	$V_{GS} = 0V$	T _C = 150°C	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

On Characteristics

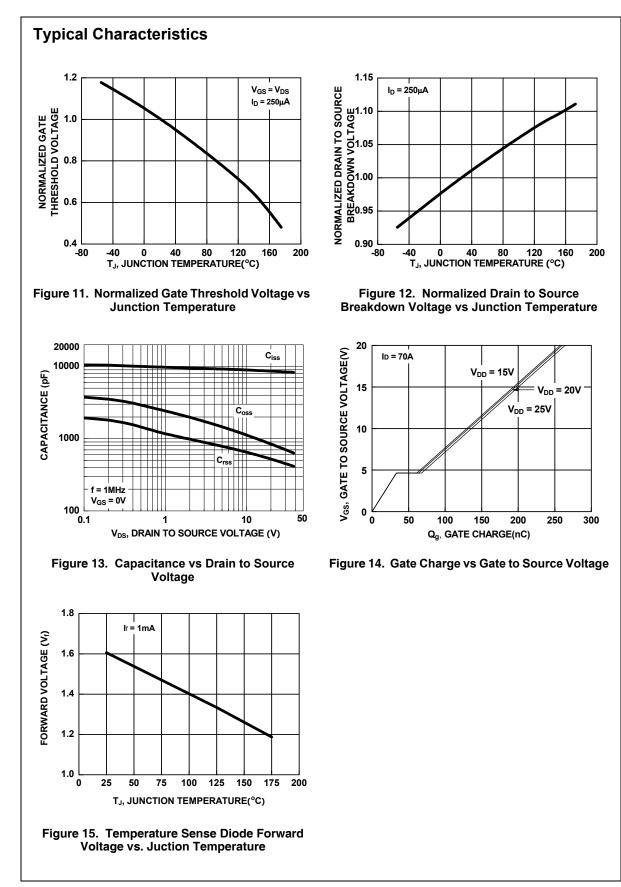
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	2.8	4	V
		I _D = 70A, V _{GS} = 10V	-	3.8	5	
r _{DS(on)}	Drain to Source On Resistance	$I_D = 70A, V_{GS} = 10V, T_J = 175^{\circ}C$	-	6.5	8.5	mΩ


Dynamic Characteristics

C _{iss}	Input Capacitance		2) (-	8410	-	pF
C _{oss}	Output Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		-	765	-	pF
C _{rss}	Reverse Transfer Capacitance			-	485	-	pF
R _G	Gate Resistance	f = 1MHz		-	1.8	-	Ω
Q _{g(TOT)}	Total Gate Charge at 20V	V _{GS} = 0 to 20V		-	260	338	nC
Q _{g(10)}	Total Gate Charge at 10V	V _{GS} = 0 to 10V		-	130	169	nC
Q _{g(TH)}	Threshold Gate Charge	V_{GS} = 0 to 2V	V _{DD} = 20V	-	15.5	-	nC
Q _{gs}	Gate to Source Gate Charge		I _D = 70A	-	33	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau			-	17.7	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	30	-	nC


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Switch	ing Characteristics		L			
t _{on}	Turn-On Time		-	-	96	ns
t _{d(on)}	Turn-On Delay Time		-	14.6	-	ns
t _r	Rise Time	$V_{DD} = 20V, I_D = 70A$	-	19.1	-	ns
t _{d(off)}	Turn-Off Delay Time	$-V_{GS}$ = 10V, R_{GS} = 2 Ω	-	44	-	ns
t _f	Fall Time		-	17.3	-	ns
t _{off}	Turn-Off Time		-	-	98	ns
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 70A I _{SD} = 40A	-	1.0 0.9	1.25 1.0	V
V _{SD}	Source to Drain Diode Voltage	-	-	0.9	1.0	V
t _{rr}	Reverse Recovery Time	— I _{SD} = 70A, dI _{SD} /dt = 100A/μs	-	51	66	ns
Q _{rr}	Reverse Recovery Charge	$ISD = 70$ Å, $ISD/III = 100$ Å μ S	-	70	91	nC
V _f	Temperature Sense Diode Voltage	I _f = 1mA	1.58	1.61	1.63	V
S _f	Temperature Sense Diode Temperature Coefficient	I _f = 1mA, -55 ^o C < T _J < 175 ^o C	-2.55	-2.74	-3.11	mV/ºC
Notes: 1: Starting T _J	= 25 ^o C, L = 0.28mH, I _{AS} = 56A.					

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems


certification.

FDB8444TS N-Channel PowerTrench[®] MOSFET with Temperature Sensor

FDB8444TS Rev. A (W)

FDB8444TS N-Channel PowerTrench[®] MOSFET with Temperature Sensor

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK[®]** Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ **FRFET**® Global Power ResourceSM

Green FPS™ Green FPS[™] e-Series[™] GTO™ i-Lo™ IntelliMAX™ **ISOPLANAR**[™] MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]** R PDP-SPM™ Power220[®]

Power247[®] **POWEREDGE[®]** Power-SPM™ PowerTrench® Programmable Active Droop™ **QFET**® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SuperSOT[™]-8 SyncFET[™] The Power Franchise[®] the wer franchise TinyBoost[™] TinyBuck[™]

TinyLogic®

TINYOPTO™

TinyPower™

TinyPWM™

TinyWire™

µSerDes™ UHC[®]

UniFET™

VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative or In Design		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 131