

Current Transducer HAW 07-P

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

Electrical data						
Primary nomina r.m.s. current \mathbf{I}_{PN} (A)	Primary current measuring range $\mathbf{l}_{\mathrm{P}}(A)$	Primary Conductor Diameter (mm)	Туре			
7.5	± 19	1.1	HAW 07-P			
V _C	Supply voltage (± 5 %)		± 15	V		
I _c	Current consumption		<± 18	mΑ		
V _C I _C V _d	R.m.s. voltage for AC isolat	ion test, 50/60Hz, 1 m	า 2.0	kV		
R _{IS}	Isolation resistance @ 500	VDC	> 500	$M\Omega$		
V _{OUT}	Output voltage @ ± I _{PN} , R _I =	$= 10 \text{ k}\Omega, \mathbf{T}_{\Lambda} = 25^{\circ}\text{C}$	±4	V		
R _{OUT}	Output internal resistance	, A	100	Ω		
R	Load resistance		>10	$k\Omega$		

Accuracy-Dynamic performance data					
Χ	Accuracy $\mathbf{Q} \mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$ (without offset)	< ± 1	% of I _{PN}		
$oldsymbol{arepsilon}_{\scriptscriptstyle oldsymbol{L}}$	Linearity (0 ± I _{DN})	< ± 1	% of I _{PN}		
V _E	Electrical offset voltage, $T_{A} = 25^{\circ}C$	$< \pm 40$	mV		
V _{OE}	Hysteresis offset voltage $\hat{\mathbf{Q}} \mathbf{I}_p = 0$;				
OH	after an excursion of 1 x I _{PN}	< ± 20	mV		
\mathbf{V}_{OT}	Thermal drift of $\mathbf{V}_{_{\mathrm{OE}}}$ max.	± 1.5	mV/K		
ν _{οτ} τ cε _e	Thermal drift of the gain (% of reading)	± 0.1	%/K		
t, J	Response time @ 90% of Ip	< 3	μs		
f	Frequency bandwidth (- 3 dB) ¹⁾	DC 50	kHz		

	General data		
$T_{_{\rm A}}$	Ambient operating temperature	- 10 + 75	°C
\mathbf{T}_{s}°	Ambient storage temperature	- 15 + 85	°C
m	Mass	12	g

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2000 V
- Low power consumption
- Extended measuring range (2.5x I_{PN})

Advantages

- · Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- · Battery supplied applications
- Inverters

Notes: EN 50178 approval pending

¹⁾ Derating is needed to avoid excessive core heating at high frequency.

010824/1

HAW 07-P Front View Right View 19 +/-1 15 +/-1 20 +/-1 4 3 2 1 15 +/-1 **Bottom View** Primary Conductor See the attached table 6 +/-1 4-0.5*0.25 Signal Pins 3-p=2.54 Terminal Pin Identification Signal Pins **Primary Conductor** Direction of Current Flow Part No. Diameter Pin No. 1 -Vcc 5 (+) ----6 (-) HAW 07-P 5-6 1.1 d 0V +Vcc Output UNIT: mm **SCALE**: 2/1

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.