

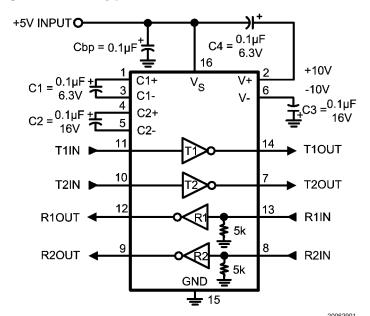
LMS202

5V Single Supply TIA/EIA-232 Dual Transceivers

General Description

The LMS202 features two transmitters and two receivers for RS-232 communication. It has a DC-to-DC converter that permits the device to operate with only a single +5V power supply. The on-chip DC-to-DC converter which utilizes four external 0.1µF capacitors to generate dual internal power supplies for RS-232 compatible output levels.

The device meet EIA/TIA-232E and CCITT V.28 specifications up to 230kbits/sec. The LMS202 is available in a 16 pin narrow and Wide SOIC package.


Features

- Single +5V power supply
- 230 kbps data rate
- On-board DC-to-DC converter
- 0.1µF charge pump capacitors
- Drop-in replacement to Maxim's MAX202

Applications

- POS equipment (Bar code reader)
- Hand-held equipment
- General purpose RS-232 communication

Connection Diagram and Typical Circuit

Pin Descriptions

Pin Number	Pin Name	Pin Function
1, 3	C1+, C1-	External capacitor connection pins. Recommended external capacitor C1 = 0.1µF (6.3V)
2	V+	Positive supply for TIA/EIA-232E drivers. Recommended external capacitor C4 = 0.1µF (6.3V)
4, 5	C2+, C2-	External capacitor connection pins. Recommended external capacitor C2 = 0.1µF (16V)
6	V-	Negative supply for TIA/EIA-232E drivers. Recommended external capacitor C3 = 0.1µF (16V)
7, 14	T1out, T2out	Transmitter output pins conform to TIA/EIA-232E levels. The typical transmitter output swing is $\pm 8V$ when loaded $3k\Omega$ load to ground. The open-circuit output voltage swings from (V+ $-$ 0.6V) to V-
8,13	R1in, R2in	Receiver inputs accept TIA/EIA-232
9, 12	R1out and R2out	Receiver output pins are TTL/CMOS compatible
10, 11	Tin1, Tin2	Transmitter input pins are TTL/CMOS compatible. Inputs of transmitter do not have pull-up resistors. Connect all unused transmitter inputs to ground
15	GND	Ground pin
16	Vs	Power supply pin for the device, +5V (±10%)

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	
	LMS202CM	LMS202CM	48 Units/Rail	d Reel M16A	
16-Pin SOIC	LMS202CMX	LIVISZUZCIVI	2.5k Units Tape and Reel		
10-7111 3010	LMS202IM	LMS202IM	48 Units/Rail		
	LMS202IMX	LIVISZUZIIVI	2.5k Units Tape and Reel		
	LMS202CMW	LMS202CMW	45 Units/Rail		
16-Pin Wide SOIC	LMS202CMWX	LIVIOZOZOVIVV	1.0k Units Tape and Reel	M16B	
10-Fill Wide Solo	LMS202IMW	LMS202IMW	45 Units/Rail	IVITOD	
	LMS202IMWX	LIVIOZUZIIVIVV	1.0k Units Tape and Reel		

www.national.com

as	(Note 1)
1	าตร

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 V_S -0.3V to 6VV+ $(V_S - 0.3V)$ to + 14V V-+0.3V to -14V Driver Input Voltage, T_{IN} -0.3V to (V + +0.3V)Receiver Input Voltage, RIN ± 30V (V - -0.3V to (V + + 0.3V)Driver Output Voltage T_O Receiver Output Voltage R_O -0.3 to $(V_S + 0.3)$ Short Circuit Duration, To Continuous

ESD Rating

Human Body Model (Note 2) 2kV Machine Model (Note 6) 200V

Soldering Information

Infrared or Convection 235°C (20sec.)

Junction Temperature 150°C Storage Temperature Range -65°C to +150°C

Operating Ratings

Supply Voltage V_S 4.5V to 5.5V

Ambient Temperature Range, TA

Commercial (C) 0°C to +70°C Industrial (I) -40°C to +85°C

Package Thermal Resistance

(Note 3)

SO 71°C/W WSO 55°C/W

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified C1 = C2 = C3 = C4 = Cbp = 0.1 µF

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 5)		(Note 5)	
DC Charac	teristics					
Is	Supply Current	No Load, T _A = 25°C		1	7	mA
Logic						
I _{INPUT}	Input Leakage Current	$T_{IN} = 0V \text{ to } V_{S}$			±10	μΑ
V_{THL}	Input Logic Theshold Low	T _{IN}			0.8	V
V _{THH}	Input Logic Theshold High	T _{IN}	2.0			V
V _{OL}	TTL/CMOS Output Voltage Low	R_{OUT} , $I_{OUT} = 3.2mA$			0.4	V
V _{OH}	TTL/CMOS Output Voltage High	R_{OUT} , $I_{OUT} = -1.0$ mA	3.5	V _S -0.1		V
RS-232 Re	ceiver Inputs	1	1			
V_{RI}	Receiver Input Voltage Range		-30		+30	V
V_{RTHL}	Receiver Input Theshold Low	$V_{S} = 5V, T_{A} = 25^{\circ}C$	0.8	1.4		V
V _{RTHH}	Receiver Input Theshold High	$V_{S} = 5V, T_{A} = 25^{\circ}C$		2	2.4	V
V _{HYST}	Receiver Input Hysteresis	$V_S = 5V$	0.2	0.6	1.0	V
R _I	Receiver Input Resistance	V _S = 5V, T _A = 25°C	3	5	7	kΩ
RS-232 Tra	nsmitter Outputs		1			
V _O	Transmitter Output Voltage Swing	All transmitters loaded with $3k\Omega$ to GND	±5	±8		V
R _O	Output Resistance	$V_S = V_+ = V = 0V,$ $V_O = \pm 2V$	300			Ω
I _{os}	Output Short Circuit Current			±11	±60	mA
	aracteristics		•	•		
DR	Maximum Data Rate	C_L = 50pF to 1000pF, R_L = 3k Ω to 7k Ω	230			kbps
T _{RPLH} T _{RPHL}	Receiver Propagation Delay	C _L = 150pF		0.08	1	μs
T _{DPLH} T _{DPHL}	Transmitter Propagation Delay	$R_L = 3k\Omega$, $C_L = 2500pF$ All transmitters loaded		2.4		μs
		1				

Electrical Characteristics (Continued)

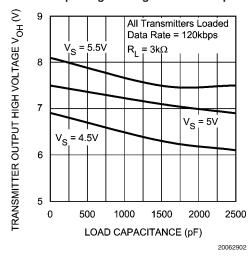
Over recommended operating supply and temperature ranges unless otherwise specified C1 = C2 = C3 = C4 = Cbp = 0.1 µF

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 5)		(Note 5)	
V _{SLEW}	Transition Region Slew Rate	$T_A = 25^{\circ}C, V_S = 5V$	3	6	30	V/µs
		$C_L = 50 pF \text{ to } 1000 pF, R_L = 3 k\Omega \text{ to } 7 k\Omega$				
		Measured from +3V to -3V or vice versa				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human Body Model, $1.5k\Omega$ in series with 100pF

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.


Note 4: Typical Values represent the most likely parametric norm.

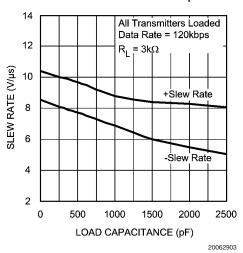
Note 5: All limits are guaranteed by testing or statistical analysis

Note 6: Machine model, 0Ω in series with 200pF

Typical Characteristics

Transmitter Output High Voltage vs. Load Capacitance

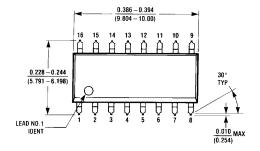
Application Information

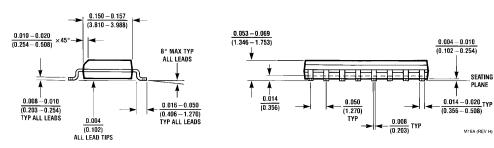

CAPACITOR SELECTION

The recommended capacitors are $0.1\mu F$. However, larger capacitors for the charge pump may be used to minimized ripples on V+ and V- pins.

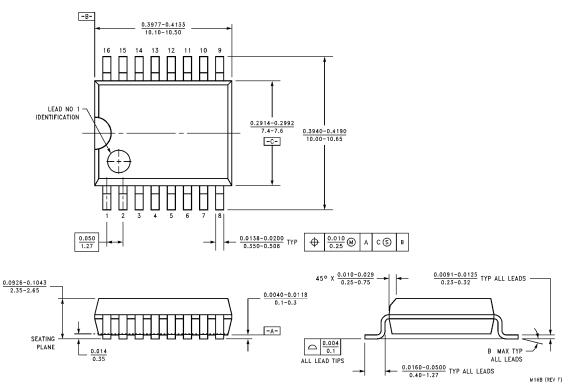
POWER SUPPLY DECOUPLING

In some applications that are sensitive to power supply noise from the charge pump, place a decoupling capacitor, Cbp, from V_S to GND. Use at least a 0.1µF capacitor or the same size as the charge pump capacitors (C1 - C4).


Transmitter Slew Rate vs. Load Capacitance



CHARGED PUMP


The dual internal charged-pump provides the $\pm 10V$ to the to transmitters. Using capacitor C1, the charge pump converts +5V to +10V then stores the +10V in capacitor C3. The charge pump uses capacitor C2 to invert the +10V to -10V. The -10V is then stored in capacitor C4.

Physical Dimensions inches (millimeters) unless otherwise noted

16-Pin SOIC NS Package Number M16A

16-Pin Wide SOIC NS Package Number M16B

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Americas Customer Support Center Email: new feedback@nsc.c

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Fax: +65-6250 4466

Email: ap.support@nsc.com Tel: +65-6254 4466 National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560