

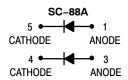
High Voltage Switching Diode

BAS19L, BAS20L, BAS21L, BAS21DW5

Features

- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant
- S and NSV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

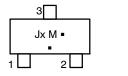
MAXIMUM RATINGS


Pating	Symbol	Value	Unit
Rating	Symbol	value	Ollit
Continuous Reverse Voltage BAS19 BAS20 BAS21	V _R	120 200 250	Vdc
Repetitive Peak Reverse Voltage BAS19 BAS20 BAS21	V_{RRM}	120 200 250	Vdc
Continuous Forward Current	IF	200	mAdc
Peak Forward Surge Current (1/2 Cycle, Sine Wave, 60 Hz)	I _{FSM}	2	Α
Repetitive Peak Forward Current (Pulse Train: T _{ON} = 1 s, T _{OFF} = 0.5 s)	I _{FRM}	0.6	Α
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Power Dissipation (Note 1)	P_{D}	385	mW
Electrostatic Discharge	ESD	HM < 500	V
		MM < 400	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Mounted on FR-5 Board = 1.0 x 0.75 x 0.062 in.

HIGH VOLTAGE SWITCHING DIODE



SOT-23 (TO-236) CASE 318 STYLE 8

SC-88A (SOT-353) CASE 419A

MARKING DIAGRAMS

x = P, R, or S P = BAS19L R = BAS20L

S = BAS21L or BAS21DW5

M = Date Code ■ Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon the manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

1

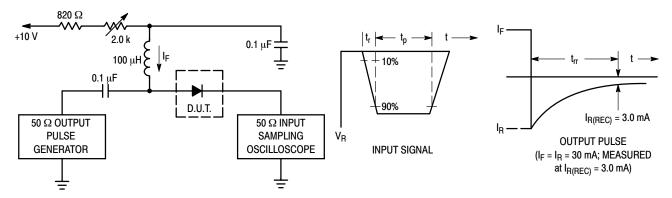
BAS19L, BAS20L, BAS21L, BAS21DW5

THERMAL CHARACTERISTICS (SOT-23)

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board	P_{D}	225	mW
(Note 2) $T_A = 25^{\circ}C$ Derate above 25°C		1.8	mW/°C
Thermal Resistance Junction-to-Ambient (SOT-23)	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate (Note 3)	P _D	300	mW
T _A = 25°C Derate above 25°C		2.4	mW/°C
Thermal Resistance Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS (SC-88A)

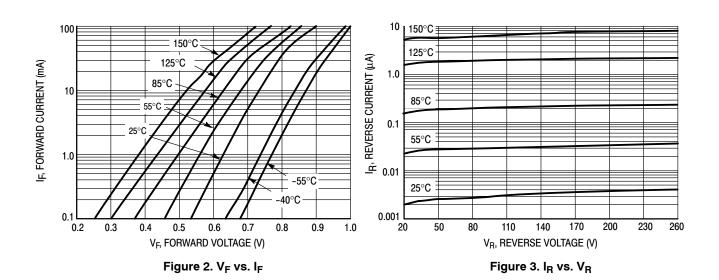
Characteristic	Symbol	Max	Unit
Power Dissipation (Note 4)	P_{D}	385	mW
Thermal Resistance – Junction-to-Ambient Derate Above 25°C	$R_{ heta JA}$	328 3.0	°C/W mW/°C
Maximum Junction Temperature	T _{Jmax}	150	°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

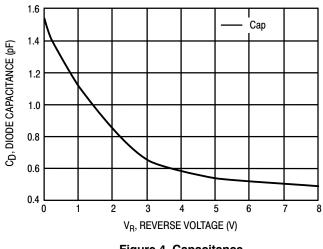

- 2. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 3. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.
- 4. Mounted on FR-5 Board = $1.0 \times 0.75 \times 0.062$ in.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
Reverse Voltage Leakage Current		I _R			μAdc
(V _R = 100 Vdc)	BAS19		_	0.1	
(V _R = 150 Vdc)	BAS20		-	0.1	
(V _R = 200 Vdc)	BAS21		_	0.1	
$(V_R = 100 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	BAS19		-	100	
$(V_R = 150 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	BAS20		-	100	
$(V_R = 200 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	BAS21		-	100	
Reverse Breakdown Voltage		V _(BR)			Vdc
(I _{BR} = 100 μAdc)	BAS19	()	120	-	
(I _{BR} = 100 μAdc)	BAS20		200	-	
(I _{BR} = 100 μAdc)	BAS21		250	-	
Forward Voltage		V _F			Vdc
(I _F = 100 mAdc)			_	1.0	
(I _F = 200 mAdc)			-	1.25	
Diode Capacitance (V _R = 0, f = 1.0 MHz)		C _D	-	5.0	pF
Reverse Recovery Time ($I_F = I_R = 30 \text{ mAdc}$, $I_{R(REC)} = 3.0 \text{ m}$	nAdc, R _L = 100)	t _{rr}	_	50	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


BAS19L, BAS20L, BAS21L, BAS21DW5



Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 30 mA.

- 2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 30 mA.
- 3. t_p » t_{rr}

Figure 1. Recovery Time Equivalent Test Circuit

30 I_{FSM}, FORWARD SURGE MAX CURRENT (A) Based on square wave currents $T_1 = 25^{\circ}C$ prior to surge 25 20 15 10 5 0.001 0.01 100 1000 t_D, PULSE ON TIME (ms)

Figure 4. Capacitance Figure 5. Forward Surge Current

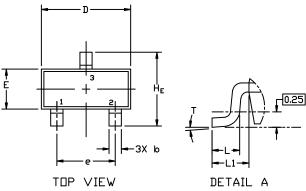
BAS19L, BAS20L, BAS21L, BAS21DW5

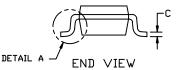
ORDERING INFORMATION

Device	Package	Shipping [†]
BAS19LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
BAS19LT3G	SOT-23 (Pb-Free)	10000 / Tape & Reel
NSVBAS19LT1G*	SOT-23 (Pb-Free)	3000 / Tape & Reel
BAS20LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
BAS20LT3G	SOT-23 (Pb-Free)	10000 / Tape & Reel
NSVBAS20LT3G*	SOT-23 (Pb-Free)	10000 / Tape & Reel
SBAS20LT1G*	SOT-23 (Pb-Free)	3000 / Tape & Reel
BAS21LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
SBAS21LT1G*	SOT-23 (Pb-Free)	3000 / Tape & Reel
BAS21LT3G	SOT-23 (Pb-Free)	10000 / Tape & Reel
SBAS21LT3G*	SOT-23 (Pb-Free)	10000 / Tape & Reel
BAS21DW5T1G	SC-88A (Pb-Free)	3000 / Tape & Reel
SBAS21DW5T1G*	SC-88A (Pb-Free)	3000 / Tape & Reel
SBAS21DW5T3G*	SC-88A (Pb-Free)	10000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*S and NSV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified

and PPAP Capable.




SOT-23 (TO-236) CASE 318 ISSUE AT

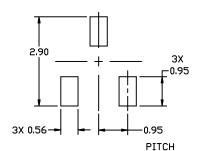
DATE 01 MAR 2023

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIM	ETERS		INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
Ε	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10°	0*		10°

GENERIC MARKING DIAGRAM*



XXX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318 ISSUE AT

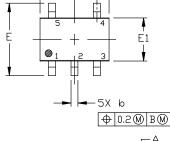
DATE 01 MAR 2023

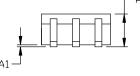
STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	1	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: I PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

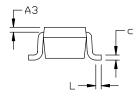
DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2

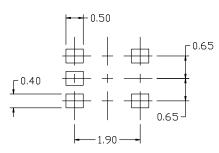
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M


DATE 11 APR 2023


NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 419A-01 DBSDLETE. NEW STANDARD 419A-02
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.


MILLIMETERS				
DIM	1112211121213			
	MIN.	N□M.	MAX.	
А	0.80	0.95	1.10	
A1			0.10	
A3	0,20 REF			
b	0.10	0.20	0.30	
С	0.10		0.25	
D	1.80	2.00	2,20	
Е	2.00	2.10	2,20	
E1	1.15	1.25	1.35	
е	0.65 BSC			
L	0.10	0.15	0.30	

e

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

STYLE 9:

STYLE 1: PIN 1. BASE 2. EMITTER 3 BASE 4. COLLECTOR 5. COLLECTOR STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR CATHODE

PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1

STYLE 3:

STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3 SOURCE 1 4. GATE 1 5. GATE 2

PIN 1. ANODE 2. CATHODE

3. ANODE 4. ANODE

ANODE
 ANODE

STYLE 5: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4

STYLE 6: STYLE 7: STYLE 8: PIN 1. EMITTER 2 PIN 1. CATHODE 2. COLLECTOR 3. N/C PIN 1. BASE 2. EMITTER 2. BASE 2 3. EMITTER 1 3. BASE 4. COLLECTOR 4. COLLECTOR 4. BASE 5. COLLECTOR 2/BASE 1 5. COLLECTOR 5. EMITTER

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:

98ASB42984B

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: SC-88A (SC-70-5/SOT-353)

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales