
ADXL337 and ADXL377 Accelerometer
Hookup Guide

Introduction

The ADXL337 and the ADXL377 are both small, thin, low power, complete

3-axis accelerometers with signal conditioned analog voltage outputs.

Here are photographs of each accelerometer breakout board which we

created to make these small chips easier to use:

The primary difference between the two is the range of acceleration they

measure. The ADXL337 measures acceleration with a full-scale range of ±3

g while the ADXL377 has a full-scale range of ±200 g for measuring more

extreme changes in motion, shock or vibration.

Covered in this Tutorial

In this tutorial, we will help you learn how to use these accelerometers so

you can quickly and painlessly integrate them into your project[s]. Here is

what we�ll cover:

� Hardware Overview � An overview of the ADXL337/ADXL377 IC�s,

and their respective breakout boards we designed to make them

simple to use.

� Example Hookup � How to connect the accelerometers to the

ubiquitous Arduino so we can start writing code to work with them.

� Example Code � We�ve written example sketches that demonstrate

how to collect sensor data as well as make sense of it.

Required Materials

� ADXL337 Breakout Board and/or ADXL377 Breakout Board

� Arduino Uno or any Arduino Board� We will use the Uno as the

example, however you should be able to use any Arduino board you

have handy including the RedBoard, Pro, Mega, etc.

You may also need a breadboard, jumper wires, and straight male headers

to follow the example setup, if you don�t already have these or another way

of connecting the Arduino to the breakout board.

Page 1 of 6

Suggested Reading

Before continuing on with this tutorial, we recommend you be somewhat

familiar with the concepts in these tutorials:

� Accelerometer Basics � This is a great primer on accelerometers �

how they work, and why they�re used.

� Accelerometer Buying Guide � If you�re not sure which

accelerometer is best for you, check out this guide.

� Logic Levels � The ADXL337/ADXL377 are 3.3V devices, so your

analog to digital (ADC) readings will vary depending on whether

you�re using a 5V or 3.3V micro! Both will work, just be aware of how

it affects the values the microcontroller reads.

Hardware Overview

The Breakout Boards for the ADXL337 and ADXL377 break out the all the

pins you�ll need to get the necessary data from the accelerometers.

As you can see, each breakout has the same pins broken out. Here is

some information about each pin:

Pin

Label
Pin Function Input/OutputNotes

3.3V Power Supply Input Can be between 1.8 - 3.6V.

X
X axis

acceleration
Output

Analog output whose voltage

correlates to acceleration measured on

the X axis

Y
Y axis

acceleration
Output

Analog output whose voltage

correlates to acceleration measured on

the Y axis

Z
Z axis

acceleration
Output

Analog output whose voltage

correlates to acceleration measured on

the Z axis

ST Self Test Input Used to verify sensor functionality

GND Ground Input
0V, common voltage to share with

microcontroller circuit

Voltage Supply Requirements

The big alert here is that the ADXL337 and ADXL377 both have a

maximum voltage of 3.6V � that range applies to both the power supply

and the self test pin. You can use a 5V or 3.3V micro with these sensors as

long as you power the board with 3.3V. Be aware though, that your analog

to digital (ADC) readings will vary depending on whether you�re using a 5V

or 3.3V micro! Both will work, just be aware of how it affects the numeric

values the microcontroller reads.

Fortunately, you don�t need a lot of power to make the accelerometers

work. In normal operating mode they typically draw about 300µA.

Extra Hardware Notes

Page 2 of 6

If you are powering either the ADXL337 or ADXL377 with 3.3V, a voltage

reading of 1.65V on the X pin will correspond to an acceleration reading of

0g for both chips. However, if the X pin reads 3.3V, on the ADXL337 this

means a force of 3g is being applied on the x axis while the same reading

on an ADXL377 would indicated a force of 200g. The usage of both chips is

essentially the same, but interpreting the readings is different due to the

scale that each chip measures.

The ADXL377 also has 4 mounting holes, as opposed to just two, to allow

for a more secure physical connection to your project since it will likely be

subjected to more extreme force.

Also, for both chips, 0.01µF capacitors are used on the X, Y, and Z outputs.

This means the maximum rate you can collect acceleration data from the

IC�s is 500Hz.

Example Hookup

Soldering

Before you can plug your accelerometer breakout board into a breadboard

and connect it to anything, you�ll need to solder connectors or wires to the

breakout pins. What you solder to the board depends on how you�re going

to use it.

If you�re going to use the breakout board in a breadboard or similar

0.1"-spaced perfboard, we recommend soldering straight male headers into

the pins (there are also long headers if you need).

If you�re going to mount the breakout into a tight enclosure, you may want

to solder wires (stranded or solid-core) directly into the pins.

Simple Hookup

This example will use an Arduino Uno to collect and interpret the sensor

data from the ADXL337 or ADXL377. Since the sensors' outputs are

analog, all we need are three wires between the Arduino�s �Analog In� pins

and accelerometer (aside from power and ground). While the following

hookup diagram shows the ADXL337, the header and connections to the

Arduino are the same for both boards. Here�s the hookup:

We simply have to supply the accelerometer with power (3.3V and GND),

then hookup the X, Y, and Z lines of the sensor to ADC pins (A0, A1, and

A2 respectively in this case). The self test pin (ST) can be left disconnected

or connected to ground under normal operation. If you want to use the self

test to double check the functionality of the sensor, tie it to 3.3V. Check the

datasheet for more info.

Page 3 of 6

Example Code

Now that your accelerometer breakout is electrically connected to your

Arduino, it�s time to dive into the code. The full example sketch can be

found in the github repository for either the ADXL337 or the ADXL377. The

code is the same with the exception of the value for the scale variable.

The first two lines of code in the sketch setup configuration variables.

int scale = 3;

boolean micro_is_5V = true;

The variable scale is set to the full scale of the accelerometer measured in

g forces. It is set to 3 for the ADXL337 and set to 200 for the ADXL377,

since the sensors measure a ±3g and ±200g range respectively. The

variable micro_is_5V is set to true if using a 5V microcontroller such as

the Arduino Uno, or false if using a 3.3V microcontroller. We want to

know this because it affects the interpretation of the sensor data we will

read later on.

Next we use the setup() function in initialize serial communication so that

we can later print sensor data to the Serial Monitor.

void setup()

{

// Initialize serial communication at 115200 baud

 Serial.begin(115200);

}

Using the loop() function, we collect the sensor data, scale it to the

appropriate units measured in g forces, and print both the raw and scaled

data to the Serial Monitor. First, let�s look at how we read the sensor data.

void loop()

{

// Get raw accelerometer data for each axis

int rawX = analogRead(A0);

int rawY = analogRead(A1);

int rawZ = analogRead(A2);

We use the analog inputs A0, A1, and A2 on the Arduino and a few analog

reads to get a number between 0 and 1023 that corresponds to the voltage

on those pins. Those voltages reflect the latest acceleration measurement

from the sensor. As an example, if the ADXL337 is measuring 3.3V on the

X pin, this means it is measuring +3g�s on the X axis. This in turn is

measured by the microcontroller. If you�re using a 3.3V microcontroller, the

analog read will return 1023 and store that value in the variable rawX . If

you�re using a 5V microcontroller, the analog read will return 675 and store

that value in that same variable instead. That�s why it�s important to set the

variable micro_is_5V correctly so we know how to interpret these raw

values.

Knowing the microcontroller�s voltage, will allow us to scale these integers

into readable units measured in g forces correctly. Here�s how we scale

these values into more meaningful units.

Page 4 of 6

float scaledX, scaledY, scaledZ; // Scaled values for each ax

is

if (micro_is_5V) // microcontroller runs off 5V

 {

 scaledX = mapf(rawX, 0, 675, scale, scale); // 3.3/5 * 10
23 =~ 675

 }

else // microcontroller runs off 3.3V

 {

 scaledX = mapf(rawX, 0, 1023, scale, scale);
 }

We first declare the scaled variables as floats, since we want decimal

places. We then check whether the microcontroller is running off of 5V or

3.3V with the boolean micro_is_5V . Based on that we scale the raw

integer value of x, rawX , into a decimal value measured in g forces, called

scaledX using a mapping function. We also do this for the Y and Z axis

however I left those out above since they follow the exact same process.

Remember that the 675 came from the fact that a 5V Arduino will measure

3.3V as 675, while a 3.3V Arduino will measure 3.3V as 1023.

The mapf() function exists in the sketch and works exactly the same as

Arduino standard map() function, which you can reference here. The

reason I didn�t use the standard map was because it deals with integers

only, and, for our purposes, we need decimal places. Thus, I essentially

rewrote the exact same function using floats instead.

After scaling, we print both the raw and scaled data to the Serial Monitor.

You probably only care to view the scaled data unless your debugging,

however I left both there so you can compare. Here�s how to print the raw

and scaled data for each axis:

// Print out raw X,Y,Z accelerometer readings

 Serial.print("X: "); Serial.println(rawX);

// Print out scaled X,Y,Z accelerometer readings

 Serial.print("X: "); Serial.print(scaledX); Serial.println

(" g");

This allows you to see the data in both forms. Afterward, we use a delay

before making extra sensor reads.

delay(2000);

In the example sketch, we pause for 2 seconds (2000 milliseconds) since

we are simply printing to the Serial Monitor for viewing and learning

purposes. In your actual project, you can read the sensor at 500Hz at most,

which means you want a minimum of 2 milliseconds in between sensor

reads.

Then it�s back to the beginning of loop() . Hope this helps you collect and

analyze accelerometer data in your own project.

Resources & Going Further

Thanks for reading! By now you�ve become familiar with both the hardware

and software to use the ADXL337 and ADXL377 accelerometers. We�re

excited to see what you build with these sensors. The following resources

may be helpful for you when building your related projects:

� ADXL337 Datasheet

� ADXL377 Datasheet

� ADXL337 Breakout Github Repository

Page 5 of 6

� ADXL377 Breakout Github Repository

� Using Github

Now go create something awesome with your accelerometer. Need some

inspiration? Check out these other SparkFun tutorials:

� Das Blinken Top Hat

� Dungeons and Dragons Dice Gauntlet

Page 6 of 6

11/17/2015https://learn.sparkfun.com/tutorials/adxl337-and-adxl377-accelerometer-hookup-guide?_...

