

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

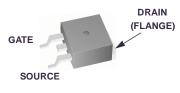
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

May 2008

FDP8880 / FDB8880 N-Channel PowerTrench MOSFET 30V, 54A, 11.6m Ω

Features

- $r_{DS(ON)} = 14.5 \text{m}\Omega$, $V_{GS} = 4.5 \text{V}$, $I_D = 40 \text{A}$
- $r_{DS(ON)} = 11.6m\Omega$, $V_{GS} = 10V$, $I_D = 40A$
- High performance trench technology for extremely low r_{DS(ON)}
- Low gate charge
- High power and current handling capability
- RoHS Complicant



General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS(ON)}}$ and fast switching speed.

Application

■ DC / DC Converters

TO-263AB FDB SERIES

TO-220AB FDP SERIES

MOSFET Maximum	Ratings	$T_C = 25$ °C unless otherwise noted
----------------	---------	--------------------------------------

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	30	V
V _{GS}	Gate to Source Voltage	±20	V
	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	54	Α
I_{D}	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 4.5V$)	48	А
	Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 43^{\circ}C/W$)	11	А
	Pulsed	Figure 4	А
E _{AS}	Single Pulse Avalanche Energy (Note 1)	31	mJ
D	Power dissipation	55	W
P_{D}	Derate above 25°C	0.37	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-220,TO-263	2.73	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-220,TO-262 (Note 2)	62	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-263, 1in ² copper pad area	43	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP8880	FDP8880	TO-220AB	Tube	N/A	50 units
FDB8880	FDB8880	TO-263AB	AB 330mm 24mm		800 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test C	onditions	Min	Тур	Max	Units
Off Char	acteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_C$	_{SS} = 0V	30	-	-	V
	Zero Gate Voltage Drain Current	V _{DS} = 24V		-	-	1	
IDSS	Zero Gate voltage Drain Current	$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA
IGSS	Gate to Source Leakage Current	v _{GS} = ±20 v		-	-	±100	L

On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250\mu A$	1.2	-	2.5	V
r _{DS(ON)} Drain to Source On Resistance	I _D = 40A, V _{GS} = 10V	-	0.0095	0.0116		
	Drain to Source On Resistance	$I_D = 40A, V_{GS} = 4.5V$	-	0.012	0.0145	0
	$I_D = 40A, V_{GS} = 10V,$ $T_J = 175$ °C	-	0.015	0.019	52	

C _{ISS}	Input Capacitance		-	1240	-	pF
C _{OSS}	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$ f = 1MHz	-	255	-	pF
C _{RSS}	Reverse Transfer Capacitance	I = IIVIHZ	-	147	-	pF
R _G	Gate Resistance	V _{GS} = 0.5V, f = 1MHz	-	2.7	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V	-	22	29	nC
Q _{g(5)}	Total Gate Charge at 5V	V _{GS} = 0V to 5V	-	12	16	nC
Q _{g(TH)}	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 1V$ $V_{DD} = 15V$ $I_{D} = 40A$	-	1.6	2.1	nC
Q _{gs}	Gate to Source Gate Charge	$I_D = 40A$ $I_q = 1.0 \text{mA}$	-	3.2	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	2.0	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	4.8	-	nC
t _{ON}	Turn-On Time		-	-	171	ns
	ng Characteristics (V _{GS} = 10V)		-	-	171	ns
t _{d(ON)}	Turn-On Delay Time		-	8	-	ns
t _r	Rise Time	$V_{DD} = 15V, I_D = 40A$	-	107	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 13.6\Omega$	-	47	-	ns
t _f	Fall Time		-	51	ı	ns
t _{OFF}	Turn-Off Time		-	-	147	ns
	D: 1 01 11					
Drain-S	ource Diode Characteristics					
	Source to Drain Diode Voltage	I _{SD} = 40A	-	-	1.25	V
				_	10	V
V _{SD}	Journal Drawn Brown Tolkage	$I_{SD} = 3.5A$	-	-	1.0	V
V _{SD}	Reverse Recovery Time	$I_{SD} = 3.5A$ $I_{SD} = 40A$, $dI_{SD}/dt = 100A/\mu s$	-	-	27	ns

Notes: 1: Starting T_J = 25°C, L = 34uH, I_{AS} = 43A,Vdd = 27V, Vgs = 10V. 2: Pulse width = 100s.

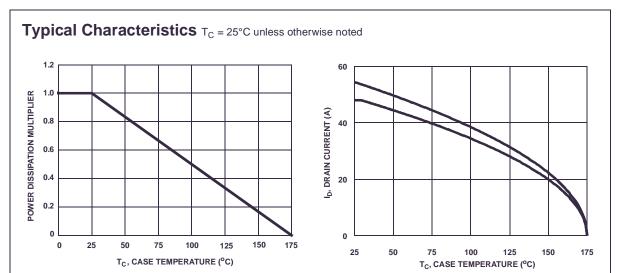


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

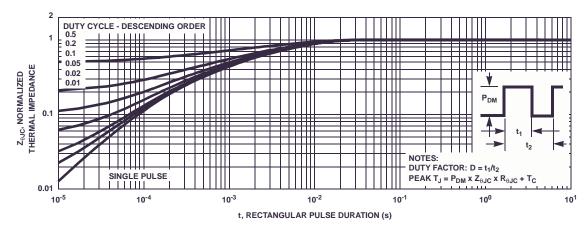


Figure 3. Normalized Maximum Transient Thermal Impedance

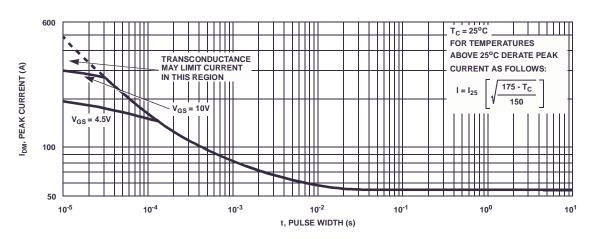
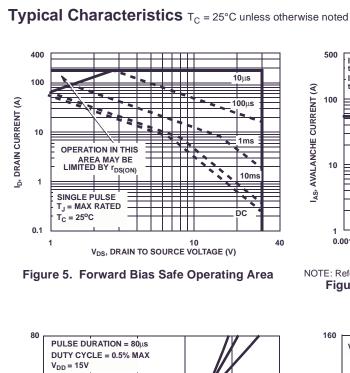
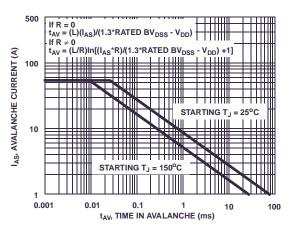
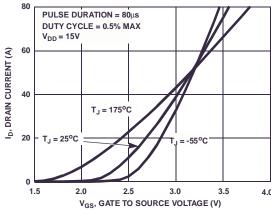




Figure 4. Peak Current Capability



NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Capability

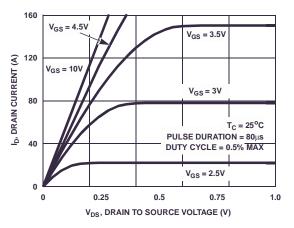
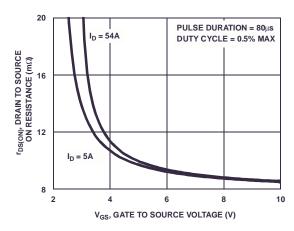



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

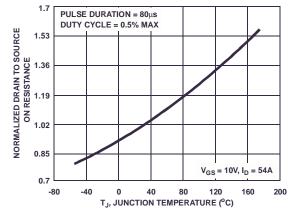


Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

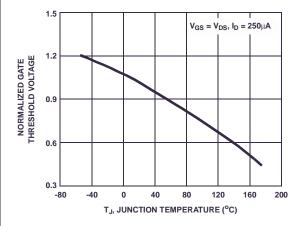


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

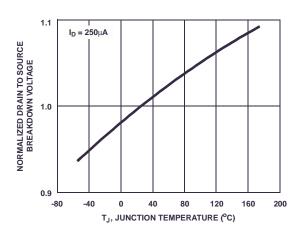


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

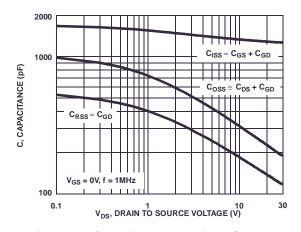


Figure 13. Capacitance vs Drain to Source Voltage

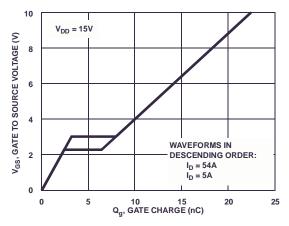


Figure 14. Gate Charge Waveforms for Constant Gate Current

Test Circuits and Waveforms

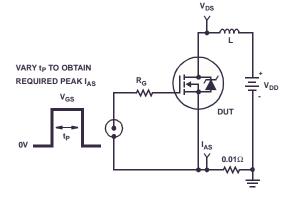


Figure 15. Unclamped Energy Test Circuit

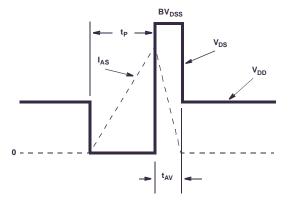


Figure 16. Unclamped Energy Waveforms

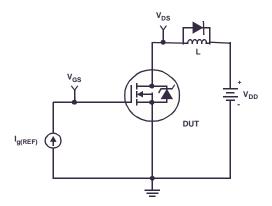


Figure 17. Gate Charge Test Circuit

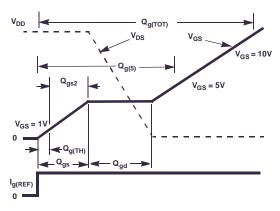


Figure 18. Gate Charge Waveforms

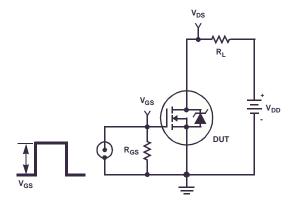


Figure 19. Switching Time Test Circuit

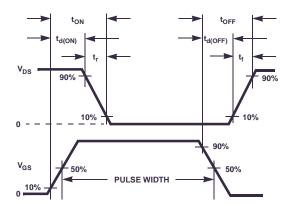
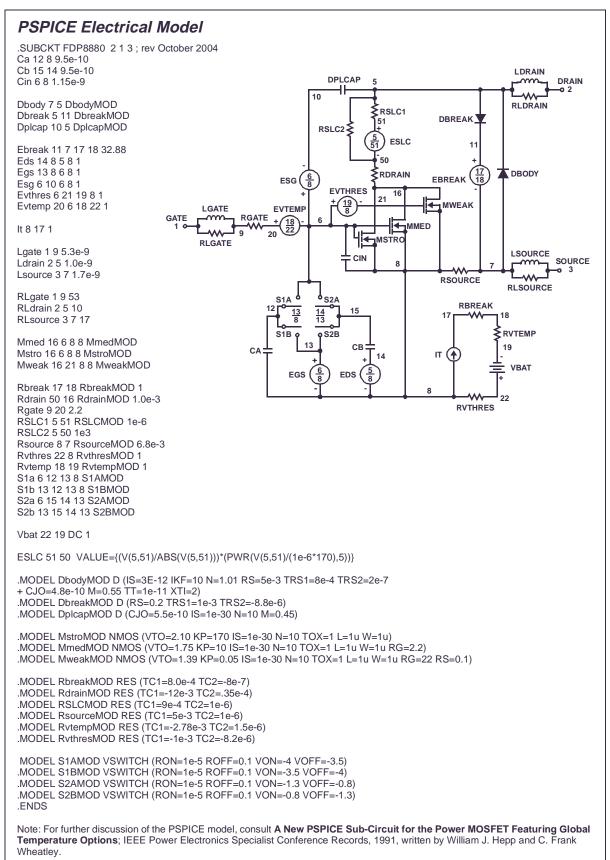
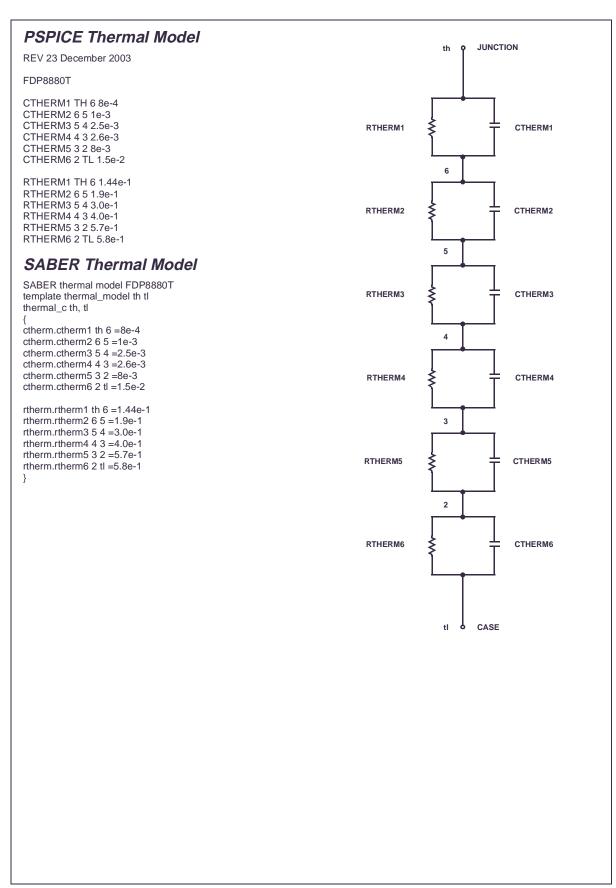




Figure 20. Switching Time Waveforms


```
SABER Electrical Model
rev October 2004
template FDP8880 n2,n1,n3
electrical n2,n1,n3
var i iscl
dp..model dbodymod = (isl=3e-12,ikf=10,nl=1.01,rs=5e-3,trs1=8e-4,trs2=2e-7,cjo=4.8e-10,m=0.55,tt=1e-11,xti=2)
dp..model dbreakmod = (rs=0.2.trs1=1e-3.trs2=-8.8e-6)
dp..model dplcapmod = (cjo=5.5e-10,isl=10e-30,nl=10,m=0.45)
m..model mstrongmod = (type=\_n, vto=2.10, kp=170, is=1e-30, tox=1)
m..model mmedmod = (type=_n, vto=1.75, kp=10, is=1e-30, tox=1)
m..model mweakmod = (type=_n, vto=1.39, kp=0.05, is=1e-30, tox=1, rs=0.1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3.5)
                                                                                                            LDRAIN
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4)
                                                                     DPLCAP
                                                                                                                     DRAIN
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.3,voff=-0.8)
                                                                 10
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.8,voff=-1.3)
                                                                                                            RLDRAIN
c.ca n12 n8 = 9.5e-10
                                                                                RSLC1
c.cb n15 n14 = 9.5e-10
                                                                               51
                                                                  RSLC2 €
c.cin n6 n8 = 1.15e-9
                                                                                 ISCI
dp.dbody n7 n5 = model=dbodymod
                                                                                           DBREAK
dp.dbreak n5 n11 = model=dbreakmod
                                                                                RDRAIN
                                                               <u>6</u>
dp.dplcap n10 n5 = model=dplcapmod
                                                          ESG
                                                                                                   11
                                                                                                            DBODY
                                                                     EVTHRES
spe.ebreak n11 n7 n17 n18 = 32.88
                                                                        (<u>19</u>)
                                                                                             MWEAK
                                          LGATE
                                                         EVTEMP
spe.eds n14 n8 n5 n8 = 1
                                                  RGATE
                                  GATE
spe.egs n13 n8 n6 n8 = 1
                                                                                              EBREAK
                                                                                 MMED
                                                9
                                                                          MSTRO
spe.esg n6 n10 n6 n8 = 1
                                         RLGATE
spe.evthres n6 n21 n19 n8 = 1
                                                                                                            LSOURCE
                                                                          CIN
spe.evtemp n20 n6 n18 n22 = 1
                                                                                                                     SOURCE
                                                                                          RSOURCE
i.it n8 n17 = 1
                                                                                                           RLSOURCE
I.lgate n1 n9 = 5.3e-9
                                                                                                RBREAK
                                                                  14
13
I.ldrain n2 n5 = 1.0e-9
                                                                                             17
I.lsource n3 n7 = 1.7e-9
                                                                                                        ₹RVTEMP
                                                         S1B
                                                                  oS2B
                                                                          СВ
                                                                                                          19
res.rlgate n1 n9 = 53
                                                    CA
                                                                                              (
                                                                                           IT
                                                                               14
res.rldrain n2 n5 = 10
                                                                                                            VBAT
res.rlsource n3 n7 = 17
                                                            EGS
                                                                       EDS
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
                                                                                                RVTHRES
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=8.0e-4,tc2=-8e-7
res.rdrain n50 n16 = 1.0e-3, tc1=-12e-3,tc2=.35e-4
res.rgate n9 n20 = 2.2
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 6.8e-3, tc1=5e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-1e-3,tc2=-8.2e-6
res.rvtemp n18 n19 = 1, tc1=-2.78e-3,tc2=1.5e-6
sw vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
|sc| = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/170))**5)))
```


TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ **ACEx®** PDP-SPM™ The Power Franchise® Power-SPM™ F-PFS™ Build it Now™ puwer CorePLUS™ FRFET® PowerTrench® franchise CorePOWER™ Global Power ResourceSM Programmable Active Droop™ TinvBoost™ **OFET®** $CROSSVOLT^{TM}$ Green FPS™ TinyBuck™ QS™ TinyLogic[®] CTL^{TM} Green FPS™ e-Series™ GTO™ TINYOPTO™ Current Transfer Logic™ Quiet Series™ EcoSPARK[®] IntelliMAX™ RapidConfigure™ TinyPower™ ISOPLANAR™ EfficentMax™ Saving our world 1mW at a time™ TinyPWM™ EZSWITCH™ * MegaBuck™ SmartMax™ TinyWire™ µSerDes™ MICROCOUPLER™ SMART START™ MicroFET™ SPM[®] MicroPak™ STEALTH™ airchild[®] **UHC**® MillerDrive™ SuperFET™ Fairchild Semiconductor® MotionMax™ SuperSOT™-3 Ultra FRFET™ UniFET™ FACT Quiet Series™ Motion-SPM™ SuperSOT™-6 SuperSOT™-8 FACT[®] OPTOLOGIC® VCX™ $\mathsf{FAST}^{\mathbb{R}}$ OPTOPLANAR® SuperMOS™ VisualMax™ SYSTEM ® FastvCore™ FlashWriter® *

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I34

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative