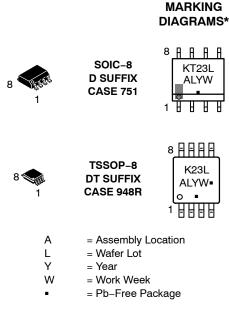
3.3 V Dual Differential LVPECL/LVDS to LVTTL Translator

NB100ELT23L

Description

The NB100ELT23L is a dual differential LVPECL/LVDS to LVTTL translator. Because LVPECL (Positive ECL) or LVDS levels are used, only +3.3 V and ground are required. The small outline 8-lead package and the dual gate design of the ELT23L makes it ideal for applications which require the translation of a clock and a data signal.

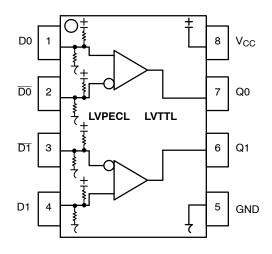
The ELT23L is available in only the ECL 100K standard. Since there are no LVPECL outputs or an external V_{BB} reference, the ELT23L does not require both ECL standard versions. The LVPECL inputs are differential. Therefore, the NB100ELT23L can accept any standard differential LVPECL/LVDS input referenced from a V_{CC} of +3.3 V.


Features

- 2.1 ns Typical Propagation Delay
- Maximum Operating Frequency > 160 MHz
- 24 mA LVTTL Outputs
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with GND = 0 V
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com


(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
NB100ELT23LDR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NB100ELT23LDTG	TSSOP-8 (Pb-Free)	100 Units / Tube
NB100ELT23LDTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Figure 1. 8–Lead Pinout (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Q0, Q1	LVTTL Outputs
D0*, D1* D0**, D1**	Differential LVPECL Inputs
V _{CC}	Positive Supply
GND	Ground

*Pins will default to $V_{CC}/2$ when left open. If connected to a common termination voltage under no signal conditions, then the device will be susceptible to self-oscillation.

**Pins will default to 2/3 V_{CC} when left open. If connected to a common termination voltage under no signal conditions, then the device will be susceptible to self-oscillation. See AND8020, Section 6 for options.

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor D D	50 kΩ 75 kΩ
Internal Input Pullup Resistor	50 kΩ
ESD Protection Human Body Model Machine Model Charged Device Model	> 1.5 kV > 100 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
SOIC-8 TSSOP-8	Level 1 Level 3
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 1.25 in
Transistor Count	91 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Power Supply	GND = 0 V		3.8	V
VI	Input Voltage	GND = 0 V	$V_I \leq V_{CC}$	3.8	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SO-8 SO-8	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SO-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
T _{sol}	Wave Solder Pb-Free	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. PECL DC CHARACTERISTICS V_{CC} = 3.3 V, GND = 0 V (Note 2)

			−40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CCH}	Power Supply Current (Outputs set to HIGH)	10	23	30	10	23	30	10	24	30	mA
I _{CCL}	Power Supply Current (Outputs set to LOW)	15	26	35	15	26	35	15	27	35	mA
VIH	Input HIGH Voltage	2075		2420	2075		2420	2075		2420	mV
VIL	Input LOW Voltage	1355		1675	1355		1675	1355		1675	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 3)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
١ _{١L}	Input LOW Current	-150			-150			-150			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

2. All values vary 1:1 with V_{CC} . 3. V_{IHCMR} minimum varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 5. TTL DC CHARACTERISTICS V_{CC} = 3.3 V, GND = 0.0 V, T_A = -40° C to 85° C

Symbol	Characteristic Condition		Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -3.0 mA	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 24 mA			0.5	V
I _{OS}	Output Short Circuit Current		-180		-50	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency	160			160			160			MHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential (Note 5) $C_L = 20 \text{ pF}$	1.55	1.9	2.95	1.55	1.9	2.95	1.55	1.9	3.25	ns
t _{SK+ +} t _{SK} t _{SKPP}	Output-to-Output Skew++ Output-to-Output Skew- – Part-to-Part Skew (Note 6)			60 25 500			60 25 500			60 25 500	ps
t JITTER	Random Clock Jitter (RMS)		6.0	20		6.0	20		6.0	20	ps
V _{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times C _L = 20 pF (0.8 V to 2.0 V)	700 300	900	1700 1250	700 300	900	1700 1250	700 300	900	1700 1250	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

4. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 500 Ω to GND, CL = 20 pF.

5. Reference ($V_{CC} = 3.3 \text{ V} \pm 5\%$; GND = 0 V). 6. Skews are measured between outputs under identical conditions.

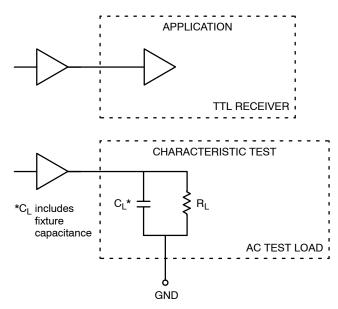
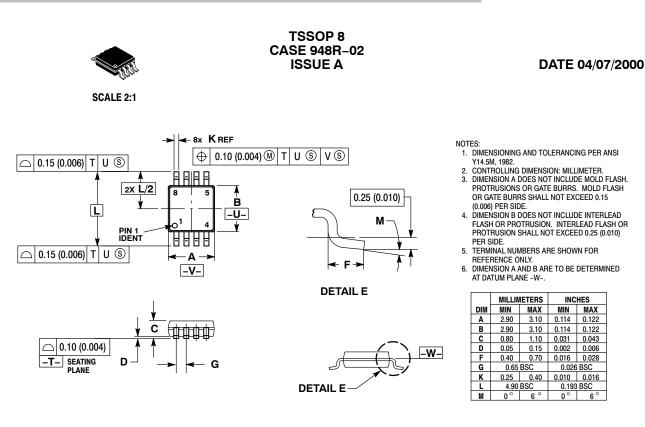


Figure 2. TTL Output Loading Used for Device Evaluation


Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	_	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices

- AND8066/D Interfacing with ECLinPS
- AND8090/D AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document Repositon Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TSSOP 8		PAGE 1 OF 1				
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

[©] Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales