

<u>Voltage Regulator</u> - Low Noise, RF LDO

1 A

NCP59800

The NCP59800 is a 1 A low-dropout linear regulators (LDOs) offering high power-supply ripple rejection (PSRR) and ultra-low output noise. This LDO uses an advanced BiCMOS process to achieve very good electrical performance. It is an ideal choice for noise sensitive Analog RF Front-Ends used in Telecom Equipment. The NCP59800 is available in the 3 mm x 3 mm DFN8 package.

Features

- Operating Input Voltage Range: 2.2 V to 6.0 V
- Output Voltage Range: 0.8 V to 5 V (adjustable)
- Quiescent Current typ. 60 μA
- Low Dropout: 200 mV typ. at 1 A, $V_{OUT} = 2.5 \text{ V}$
- ±2.5% V_{OUT} Accuracy across Load/Line/Temperature
- Stable with Small 4.7 μF Ceramic Capacitors
- Very–Low Noise: Typically 15 μ V_{RMS} from 100 Hz to 100 kHz
- Over-Current and Thermal Shutdown Protection
- Available in 3 x 3 mm DFN8 Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Telecom Infrastructure
- Audio
- High-Speed I/F (PLL/VCO)

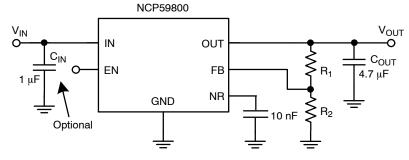
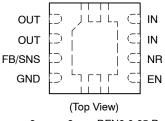


Figure 1. Typical Application Schematics

DFN8 3 x 3 mm CASE 506DB

MARKING DIAGRAM


A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

3 mm x 3 mm DFN8 0.65 P

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

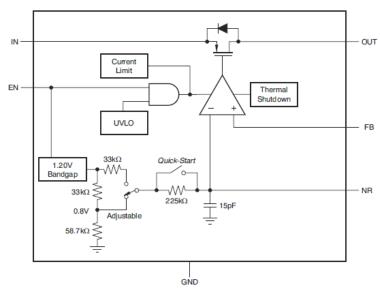


Figure 2. Internal Block Diagram

Table 1. PIN FUNCTION DESCRIPTION

Pin No. DFN8	Pin Name	Description
7,8	IN	Unregulated input supply.
4, EPAD	GND	Ground.
5	EN	Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into shutdown mode.
6	NR	Connect an external capacitor between this pin and ground to reduce the output noise to very low levels. The capacitor slows down the V_{OUT} ramp as well (soft–start). Max recommended C_{NR} value is 0.47 μF
3	FB	This pin is the input to the control loop error amplifier and is used to set the output voltage of the device.
1,2	OUT	Regulator output. A 4.7 μF to 100 μF capacitor is required for stability.

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	IN	6.5	V
Output Voltage	OUT	-0.3 to $(V_{IN} + 0.3) \le 6.5$	V
Enable Input Voltage	EN	-0.3 to 6.5	V
FB Input Voltage	FB	-0.3 to 3.6	V
Output Current	I _{OUT}	Internally Limited	mA
Maximum Junction Temperature	$T_{J(MAX)}$	150	°C
Operating Ambient Temperature Range	T _A	-40 to +125	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

- This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)
 - ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)
 - Latchup Current Maximum Rating tested per JEDEC standard: JESD78

Table 3. RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Input Voltage	V_{IN}	$\left(V_{OUT} + V_{DO}\right) \geq 2.2$	6.0	V
Junction Temperature	T_J	-40	+125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, DFN8 3 mm x 3 mm Thermal Resistance, Junction-to-Air (Note 3)	$R_{ hetaJA}$	52	°C/W

^{3.} The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

Table 5. ELECTRICAL CHARACTERISTICS Over the operating temperature range of $T_J = -40^{\circ}\text{C}$ to +125°C, $V_{IN} = (V_{OUT(NOM)} + 0.5 \text{ V})$ or 2.2 V (whichever is greater), $I_{OUT} = 1$ mA, $V_{EN} = 2.2$ V, $C_{OUT} = 4.7$ μF, and $C_{NR} = 0.01$ μF, unless otherwise noted. NCP59800 Adjustable device is tested at $V_{OUT} = 0.8$ V and $V_{OUT} = 5.0$ V. Typical values are at $T_J = +25^{\circ}\text{C}$.

Parameter	Test Condition	ıs	Symbol	Min	Тур	Max	Unit
Input Voltage Range			V _{IN}	(V _{OUT} +V _{DO}) ≥ 2.2		6.0	V
Internal Reference			V_{NR}		0.8		V
Output Voltage	Adjustable		V _{OUT}	0.8		5.0	V
Output Voltage Accuracy (Note 4)	$V_{OUT} + 0.5 \text{ V} \le V_{IN} \le 6.0 \text{ V}, V_{IM} \le 1 \text{ A}$	V _{IN} ≥ 2.2 V	V _{OUT}	-2.5	±0.3	+2.5	%
Line Regulation	$V_{OUT} + 0.5 \text{ V} \le V_{IN} \le 6.0 \text{ V}, V_{OUT} = 1 \text{ mA}$	V _{IN} ≥ 2.2 V	ΔV out/ ΔV in		150		μV/V
Load Regulation	1 mA ≤ I _{OUT} ≤ 1 A		ΔVουτ/ ΔΙουτ		2.0		μV/mA
Dropout Voltage	$V_{OUT} + 0.5 \text{ V} \le V_{IN} \le 6.0 \text{ V}, V_{OUT} = 500 \text{ mA}, V_{FB} = \text{GND}$	V _{IN} ≥ 2.2 V	V _{DO}			250	mV
	$V_{OUT} + 0.5 \text{ V} \le V_{IN} \le 6.0 \text{ V}, V_{IN} \ge 2.5 \text{ V}$ $I_{OUT} = 750 \text{ mA}, V_{FB} = \text{GND}$]			350	mV
	V_{OUT} + 0.5 V \leq V_{IN} \leq 6.0 V, V_{IN} \geq 2.5 V I_{OUT} = 1 A, V_{FB} = GND					500	mV
Output Current Limit	V _{OUT} = 0.85 V _{OUT(NOM)} , V _{IN} ≥ 3.3 V		I _{CL}	1.1	1.6	2.5	Α
Ground Pin Current	I _{OUT} = 0.1 mA		I _{GND}		60	100	μΑ
	I _{OUT} = 1 A					450	μΑ
Shutdown Current (I _{GND})	$V_{EN} \le 0.4 \text{ V}, V_{IN} \ge 2.2 \text{ V}, R_L$ 0°C \le T_J \le 85°C	= 1 kΩ,	I _{SHDN}		0.2	2.0	μΑ
Feedback Pin Current	V _{IN} = 6.0 V, V _{FB} = 0.8 V				0.02	1.0	μΑ
Power Supply Rejection Ratio	I _{OUT} = 750 mA, V _{OUT} = 3.3 V, V _{IN} = 4.3 V	f = 100 Hz f = 1 kHz f = 1 MHz	PSRR		77 63 27		dB
Output Noise Voltage	BW = 100 Hz-100 kHz, I _{OUT} = 100 mA, C _{NR} = 100 nF, V _{IN} = 4.3 V, V _{OUT} = 3.3 V		V _N		15 x V _{OUT}		μV _{RMS}
Enable Input Current	V _{IN} = V _{EN} = 6.0 V		I _{EN}		0.02	1.0	μΑ
Soft-Start Charging Current	V _{NR} = 0.5 V		I _{SS}		7.2		μΑ
EN Pin Threshold Voltage	EN Input Voltage "H" EN Input Voltage "L"		V _{ENH}	1.2			V
			V _{ENL}		_	0.4	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $V_{OUT} = 0.8 \text{ V}, 4.5 \text{ V} \le V_{IN} \le 6.0 \text{ V}, \text{ and } 750 \text{ mA} \le I_{OUT} \le 1 \text{ A because of power dissipation higher than maximum rating of the package.}$

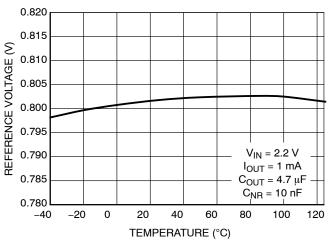
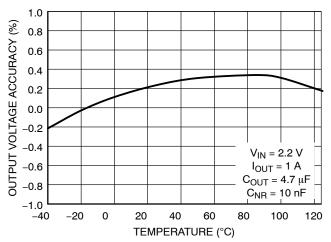

^{4.} As for NCP59800 (adjustable); it does not include external resistor tolerances and it is not tested at this condition:

Table 5. ELECTRICAL CHARACTERISTICS Over the operating temperature range of $T_J = -40^{\circ}\text{C}$ to +125°C, $V_{IN} = (V_{OUT(NOM)} + 0.5 \text{ V})$ or 2.2 V (whichever is greater), $I_{OUT} = 1$ mA, $V_{EN} = 2.2$ V, $C_{OUT} = 4.7 \,\mu\text{F}$, and $C_{NR} = 0.01 \,\mu\text{F}$, unless otherwise noted. NCP59800 Adjustable device is tested at $V_{OUT} = 0.8$ V and $V_{OUT} = 5.0$ V. Typical values are at $T_J = +25^{\circ}\text{C}$.

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Start-Up Time	V _{OUT(NOM)} = 3.3 V V _{OUT} = 0% to 90%	C _{NR} = 10 nF	t _{STR}		1.0		ms
	$V_{OUT(NOM)}$ $R_L = 3.3$ k Ω , C_{OUT} =4.7 μF	C _{NR} = 100 nF			10		ms
Undervoltage Lockout	V_{IN} rising, $R_L = 1 \text{ k}\Omega$		UVLO	1.86	2.0	2.1	V
UVLO Hysteresis	V_{IN} falling, $R_L = 1 \text{ k}\Omega$				75		mV
Thermal Shutdown	Shutdown, temperature increasing		T _{SD_TEMP}		160		°C
Thermal Shutdown Recovery	Reset, temperature decreasing		T _{SD_HYST}		140		
T _J Operating Range				-40		+125	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


As for NCP59800 (adjustable); it does not include external resistor tolerances and it is not tested at this condition:
 V_{OUT} = 0.8 V, 4.5 V ≤ V_{IN} ≤ 6.0 V, and 750 mA ≤ I_{OUT} ≤ 1 A because of power dissipation higher than maximum rating of the package.

1.0 % 0.8 VOLTAGE ACCURACY 0.6 0.4 0.2 0.0 -0.2 -0.4 V_{IN} = 2.2 VOUTPUT $I_{OUT} = 1 \text{ mA}$ -0.6 C_{OUT} = 4.7 μF -0.8 $C_{NR} = 10 nF$ -1.0 40 -20 20 40 60 100 120 TEMPERATURE (°C)

Figure 3. Output Voltage vs. Temperature – V_{OUT} = 0.8 V (Adjustable reference)

Figure 4. Output Voltage Accuracy vs. Temperature

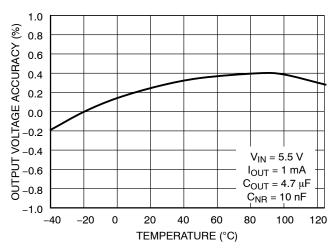
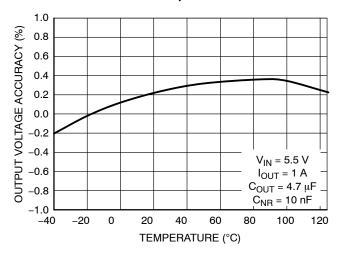



Figure 5. Output Voltage Accuracy vs. Temperature

Figure 6. Output Voltage Accuracy vs.
Temperature

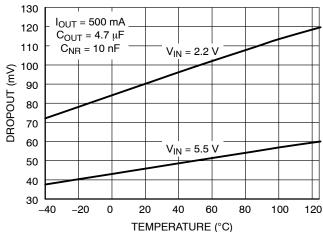
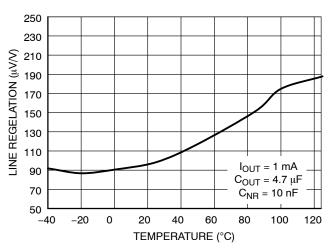



Figure 7. Output Voltage Accuracy vs. Temperature


Figure 8. Dropout Voltage vs. Temperature – $I_{OUT} = 500 \text{ mA}$

250 $I_{OUT} = 1 A$ 230 C_{OUT} = 4.7 μF DROPOUT VOLTAGE (mV) 210 $C_{NR} = 10 \text{ nF}$ $V_{1N} = 2.2 \text{ V}$ 190 170 150 130 $V_{IN} = 5.5 \text{ V}$ 110 90 70 50 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C)

Figure 9. Dropout Voltage vs. Temperature – I_{OUT} = 750 mA

Figure 10. Dropout Voltage vs. Temperature – I_{OUT} = 1 A

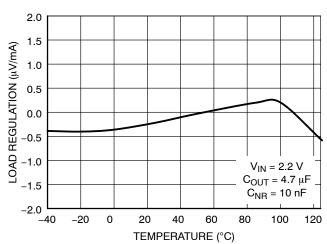
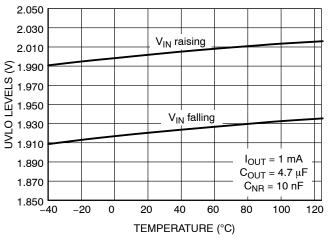



Figure 11. Line Regulation vs. Temperature

Figure 12. Load Regulation vs. Temperature

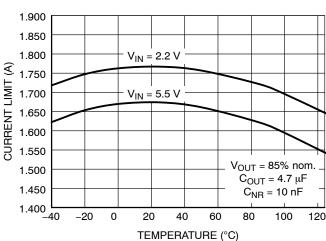
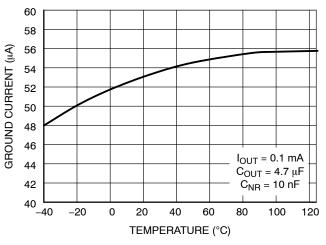
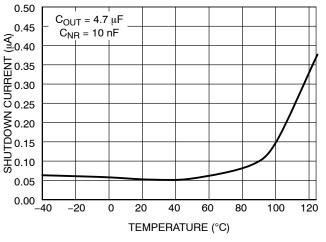



Figure 13. UVLO Thresholds vs. Temperature


Figure 14. Current Limit vs. Temperature

350 340 GROUND CURRENT (µA) 330 320 310 300 290 280 $I_{OUT} = 1 A$ 270 C_{OUT} = 4.7 μF 260 $C_{NR} = 10 \text{ nF}$ 250 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C)

Figure 15. Ground Current vs. Temperature

Figure 16. Ground Current vs. Temperature

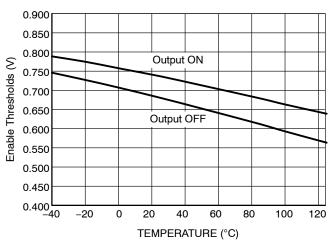



Figure 17. Shutdown Current vs. Temperature

Figure 18. Enable Thresholds vs. Temperature

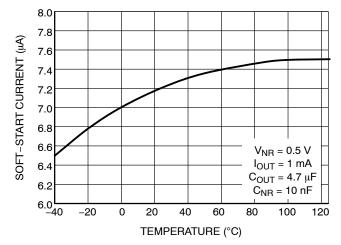


Figure 19. Feedback Input Current vs. Temperature (Adjustable Option)

Figure 20. Soft-Start Current vs. Temperature

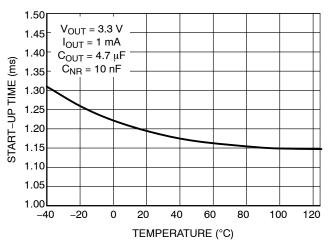


Figure 21. Start-up Time vs. Temperature

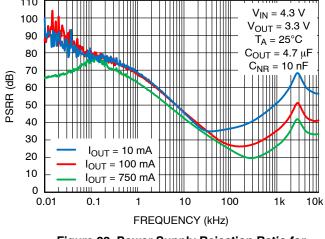


Figure 22. Power Supply Rejection Ratio for $V_{OUT} = 3.3 \text{ V}$, $C_{OUT} = 4.7 \mu\text{F}$, $C_{NR} = 10 \text{ nF}$

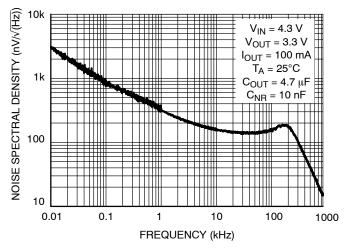


Figure 23. Output Voltage Noise Spectral Density for V_{OUT} = 3.3 V, C_{OUT} = 4.7 μ F, C_{NR} = 100 nF

APPLICATIONS INFORMATION

General Information

The NCP59800 regulator is equipped with Noise Reduction pin (NR) for noise sensitive applications. A noise reduction capacitor (C_{NR}) at the NR pin bypasses noise generated by the bandgap reference. This family of regulators offers sub-bandgap output voltages, current limit, and thermal protection, and is fully specified from -40°C to $+125^{\circ}\text{C}$, assuming resistors with zero error. For the actual design, pay attention to any resistor error factors. Figure 24 gives the Typical Application Schematics.

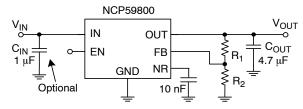


Figure 24. Typical Application Schematics

Output Voltage Setting

The output voltage can be adjusted from 0.8 V to 5.0 V using resistors divider between the output and the FB input. The values of R1 and R2 can be calculated for any voltage using the following formula:

$$V_{OUT} = 0.8 V \left(1 + \frac{R_1}{R_2} \right)$$

Recommended resistor values for frequently used voltages can be found in the Table 6.

Capacitors Selection

Although an input capacitor is not required for stability, it is good analog design practice to connect a 0.1 μF to 1.0 μF low equivalent series resistance (ESR) capacitor across the input supply near the regulator. The NCP59800 is designed to be stable with standard ceramic output capacitors of

capacitance values 4.7 μF up to 100 μF . This device is evaluated using a 4.7 $\mu F/10$ V, 10% tolerance, X5R type Ceramic Capacitors of 0805 size.

X5R- and X7R-type capacitors are highly recommended because they have minimal variation in value and ESR over temperature.

Startup Response

The C_{NR} serves not only for noise reduction. During Start-Up the C_{NR} capacitor works like the Soft Start timing capacitor. The controlled monotonic ramping of Voltage Reference (adjustable Soft-Start) is limiting the Inrush Current.

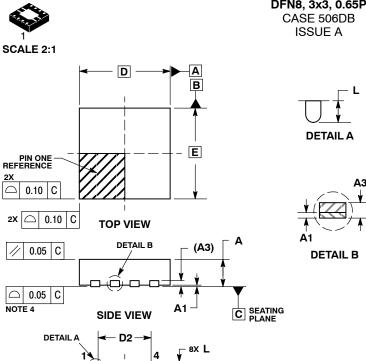
Table 6. RECOMMENDED 1% FEEDBACK RESISTOR Values for Frequently Used Nominal Output Voltages

Vouт	R ₁	R ₂
0.8 V	0 Ω (Short)	10.0 kΩ
1.0 V	2.49 kΩ	10.0 kΩ
1.2 V	4.99 kΩ	10.0 kΩ
1.5 V	8.87 kΩ	10.0 kΩ
1.8 V	12.5 kΩ	10.0 kΩ
2.5 V	21.0 kΩ	10.0 kΩ
3.3 V	30.9 kΩ	10.0 kΩ
5.0 V	52.3 kΩ	10.0 kΩ

Power Dissipation

The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. For reliable operation junction temperature should be limited to $+125^{\circ}$ C.

Table 7. ORDERING INFORMATION


Device	Output Voltage	Marking	Package	Shipping [†]	
NCP59800BMNADJTAG	ADJ	59800 ADJB	DFN8 3x3	0000/Tana & Davi	
NCP59800BMNADJTBG	ADJ	59800 ADJB	(Pb-Free)	3000/Tape & Reel	

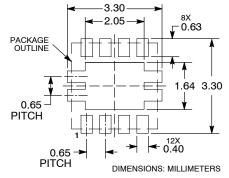
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTE: The A or B letter in the device suffix represents part orientation in the tape.

^{*}To order other package and voltage variants, please contact your ON sales representative.

4x b1

F2


CAB

0.10

0.05 С NOTE 3

RECOMMENDED **SOLDERING FOOTPRINT***

BOTTOM VIEW

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DFN8, 3x3, 0.65P

DATE 12 OCT 2016

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
- 0.30mm FROM THE TERMINAL TIP.
 COPLANARITY APPLIES TO THE EXPOSED
 PAD AS WELL AS THE TERMINALS.

	MILLIM	MILLIMETERS				
DIM	MIN	MAX				
Α	0.80	1.00				
A1	0.00	0.05				
А3	0.20	REF				
b	0.25	0.35				
b1	0.20	0.30				
D	3.00	BSC				
D2	1.65	1.85				
E	3.00	BSC				
E2	1.40	1.60				
е	0.65	BSC				
e1	0.65	REF				
L	0.30	0.50				
L1	0.00	0.15				

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

= Assembly Location Α

= Wafer Lot L = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON92252F	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DFN8, 3X3, 0.65P		PAGE 1 OF 1		

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales