FAIRCHILD

SEMICONDUCTOR®

FDP5500_F085

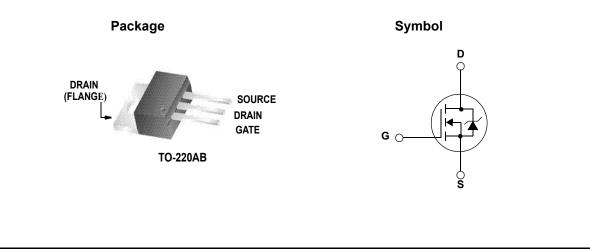
N-Channel UltraFET Power MOSFET

55V, 80A, 7m Ω

Features

- Typ $r_{DS(on)}$ = 5.1m Ω at V_{GS} = 10V, I_D = 80A
- Typ Q_{g(10)} = 114nC at V_{GS} = 10V
- Simulation Models
 -Temperature Compensated PSPICE and SABERTM Models
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- Qualified to AEC Q101
- RoHS Compliant

Applications


- DC Linear Mode Control
- Solenoid and Motor Control
- Switching Regulators
- Automotive Systems

April 2009

FDP5500_F085 N-Channel UltraFET Power MOSFET

1

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage	(Note 1)	55	V
V _{DGR}	Drain to Gate Voltage (R_{GS} = 20k Ω)	(Note 1)	55	V
V _{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous (T _C < 135 ^o C, V _{GS} = 10V)		80	Α
D	Pulsed		See Figure 4	A
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	860	mJ
П	Power Dissipation		375	W
P _D	Derate above 25°C		2.5	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	
ΤL	Max. Lead Temp. for Soldering (at 1.6mm from case for 10sec)		300	°C
T _{pkg}	Max. Package Temp. for Soldering (Package Body for 10sec)		260	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance Junction to Case	0.4	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-220AB, 1in ² copper pad area	62	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP5500	FDP5500_F085	TO-220AB	Tube	N/A	50 units

Electrical Characteristics T_{C} = 25°C unless otherwise noted

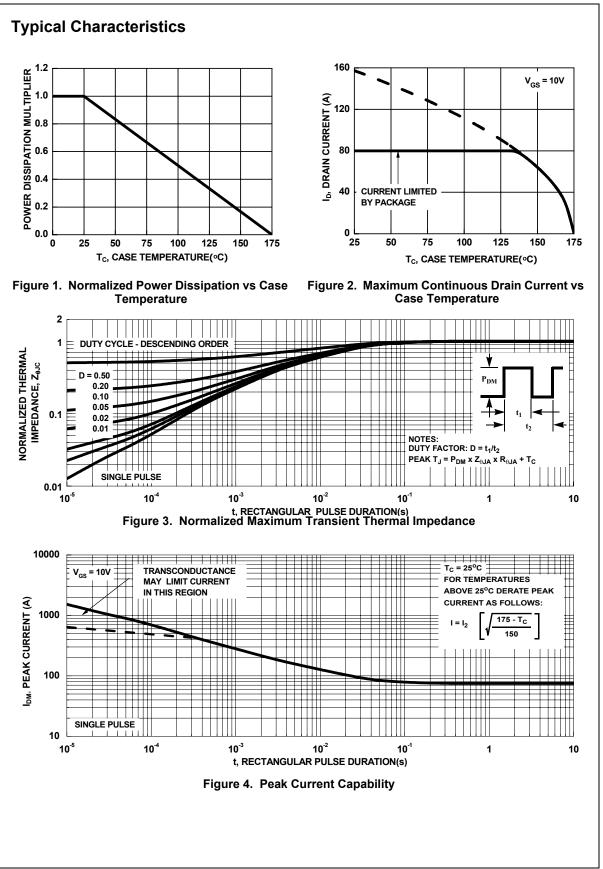
Sy	mbol	Parameter	Test Conditions	Min	Тур	Max	Units

Off Characteristics

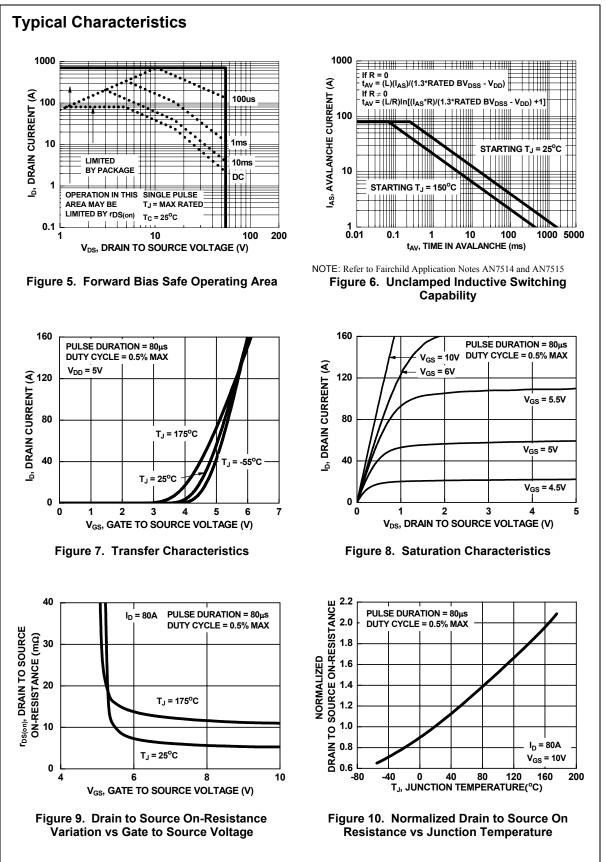
B_{VDSS}	Drain to Source Breakdown Voltage	$I_{\rm D}$ = 250 μ A, V _{GS} = 0'	V	55	-	-	V
	Zero Gate Voltage Drain Current	V _{DS} = 50V, V _{GS} = 0	IV .	-	-	1	
DSS	Zero Gale voltage Drain Current	V _{DS} = 45V	T _C = 150 ^o C	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20V		-	-	±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	2.8	4	V
r _{DS(on)}	Drain to Source On Resistance	I _D = 80A, V _{GS} = 10V	-	5.1	7	mΩ

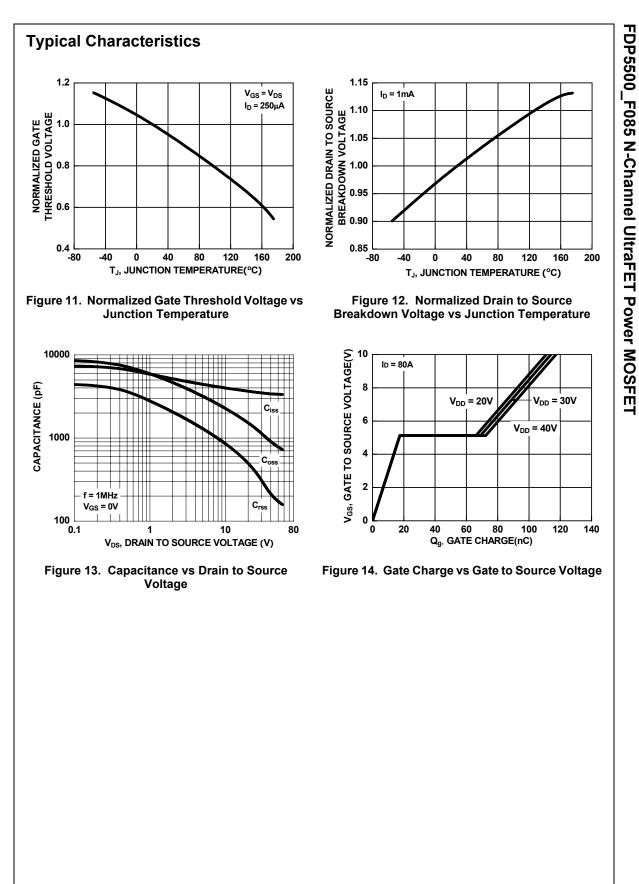

Dynamic Characteristics

C _{iss}	Input Capacitance		0)/	-	3565	-	pF
C _{oss}	Output Capacitance	───V _{DS} = 25V, V _{GS} = f = 1MHz	0ν,	-	1310	-	pF
C _{rss}	Reverse Transfer Capacitance			-	395	-	pF
Q _{g(TOT)}	Total Gate Charge at 20V	V _{GS} = 0 to 20V		-	207	269	nC
Q _{g(10)}	Total Gate Charge at 10V	V _{GS} = 0 to 10V	$V_{DD} = 30V$	-	114	148	nC
Q _{g(TH)}	Threshold Gate Charge	V_{GS} = 0 to 2V	I _D = 80A R ₁ = 0.4Ω	-	6.6	8.6	nC
Q _{gs}	Gate to Source Gate Charge		$I_{a} = 1.0 \text{mA}$	-	17.2	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		g	-	52	-	nC


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Switch	ning Characteristics					
t _{on}	Turn-On Time		-	-	75	ns
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30V, I_D = 80A,$ 	-	12	-	ns
t _r	Rise Time		-	34	-	ns
t _{d(off)}	Turn-Off Delay Time		-	37	-	ns
t _f	Fall Time		-	23	-	ns
t _{off} Drain-S	Turn-Off Time ource Diode Characteristics		-	-	96	ns
		I _{SD} = 80A	-	- 0.9	96	ns V
Drain-S	ource Diode Characteristics					

FDP5500_F085 Rev. A

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.



FDP5500_F085 N-Channel UltraFET Power MOSFET

FDP5500_F085 Rev. A

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

uto-SPM™	F-PFS™_	PowerTrench [®]	The Power Franchise
uild it Now™	FRFET®	PowerXS™	the
orePLUS™	Global Power Resource SM	Programmable Active Droop™	puwer
orePOWER™	Green FPS™	QFET®	franchise
ROSSVOLT™	Green FPS™ e-Series™	QS™	TinyBoost™
TL™	G <i>ma</i> x™	Quiet Series™	TinyBuck™
urrent Transfer Logic™	GTO™	RapidConfigure [™]	TinyLogic®
coSPARK [®]	IntelliMAX™		TINYOPTO™
ficentMax™	ISOPLANAR™		TinyPower™
ZSWITCH™ *	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPWM™
	MICROCOUPLER™	SmartMax™	TinyWire™
-7	MicroFET™	SMART START™	TriFault Detect™
®	MicroPak™	SPM®	TRUECURRENT™*
F ®	MillerDrive™	STEALTH™	µSerDes™
airchild®	MotionMax™	SuperFET™	\mathcal{U}
airchild Semiconductor [®]	Motion-SPM [™]	SuperSOT™-3	Ser Des"
ACT Quiet Series™	OPTOLOGIC®	SuperSOT™-6	UHC®
ACT [®]	OPTOPLANAR[®]	SuperSOT™-8	Ultra FRFET™
AST [®]	®	SupreMOS™	UniFET™
astvCore™	(1)	SyncFET™	VCX™
TBench™		Sync-Lock™	VisualMax™
ashWriter [®] *	PDP SPM™	SYSTEM ®*	XS™
PS™	Power-SPM™	GENERAL	

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's guality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	Formative / In Design First Production Full Production