

SCTWA30N120

Silicon carbide Power MOSFET 1200 V, 45 A, 90 mΩ (typ., T_J= 150 °C), in an HiP247[™] long leads package

Datasheet - production data

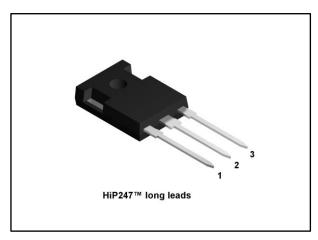
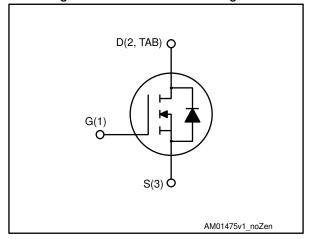



Figure 1: Internal schematic diagram

Features

- Very tight variation of on-resistance vs. temperature
- Very high operating junction temperature capability (T_J = 200 °C)
- Very fast and robust intrinsic body diode
- Low capacitance

Applications

- Solar inverters, UPS
- Motor drives
- High voltage DC-DC converters
- Switch mode power supply

Description

This silicon carbide Power MOSFET is produced exploiting the advanced, innovative properties of wide bandgap materials. This results in unsurpassed on-resistance per unit area and very good switching performance almost independent of temperature. The outstanding thermal properties of the SiC material allow designers to use an industry-standard outline with significantly improved thermal capability. These features render the device perfectly suitable for high-efficiency and high power density applications.

Table 1: Device summary

Order code	Marking	Package	Packaging
SCTWA30N120	SCT30N120	HiP247™ long leads	Tube

Contents SCTWA30N120

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Packag	e information	10
	3.1	HiP247 long leads package information	10
4	Revisio	n history	12

SCTWA30N120 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	1200	V
V _{GS}	Gate-source voltage	-10 to 25	٧
ID	Drain current (continuous) at T _C = 25 °C (limited by die)	45	А
lσ	Drain current (continuous) at T _C = 25 °C (limited by package)	40	Α
ID	Drain current (continuous) at T _C = 100 °C	34	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	90	Α
Ртот	Total dissipation at T _C = 25 °C	270	W
T _{stg}	Storage temperature range	EE to 200	°C
Tj	Operating junction temperature range	-55 to 200	10

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.65	°C/W
R _{thj-amb}	Thermal resistance junction-amb	40	°C/W

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

Electrical characteristics SCTWA30N120

2 Electrical characteristics

(T_{case} =25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 1200 \text{ V}$		1	25	μΑ
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 1200 V, T _J =200 °C		50		μΑ
Igss	Gate-body leakage current	$V_{DS}=0 \text{ V}, V_{GS}=-10 \text{ to } 22 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	1.8	3.5		>
		$V_{GS} = 20 \text{ V}, I_D = 20 \text{ A}$		80	100	mΩ
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 20 V, I _D = 20 A T _J = 150 °C		90		mΩ
resistance	V _{GS} = 20 V, I _D = 20 A T _J = 200 °C		100		mΩ	

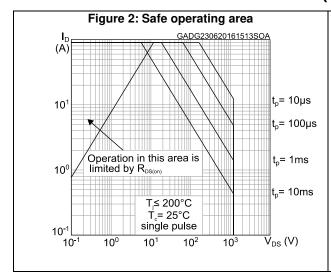
Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1700	-	pF
Coss	Output capacitance	V _{GS} =0 V, V _{DS} =400 V, f=1 MHz	-	130	-	pF
Crss	Reverse transfer capacitance	1-1 101112	-	25	-	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D=0 \text{ A}$	-	5	-	Ω
Qg	Total gate charge		-	105	-	nC
Qgs	Gate-source charge	$V_{DD} = 800 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 0 \text{ to } 20 \text{ V}$	-	16	-	nC
Q_{gd}	Gate-drain charge	VGS -0 10 20 V	-	40	-	nC

Table 6: Switching energy (inductive load)

,						
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
Eon	Turn-on switching energy	$V_{DD} = 800 \text{ V}, I_D = 20 \text{ A},$	1	500	1	μJ
E _{off}	Turn-off switching energy	$R_G = 6.8 \Omega$, $V_{GS} = -2 \text{ to } 20 \text{ V}$	-	350	-	μJ
Eon	Turn-on switching energy	$V_{DD} = 800 \text{ V}, I_D = 20 \text{ A},$	1	500	1	μJ
E _{off}	Turn-off switching energy	$R_G = 6.8 \Omega$, $V_{GS} = -2 \text{ to } 20 \text{ V}$ $T_{J} = 150 \text{ °C}$	-	400	-	μJ

Table 7: Switching times

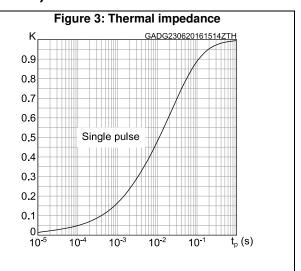
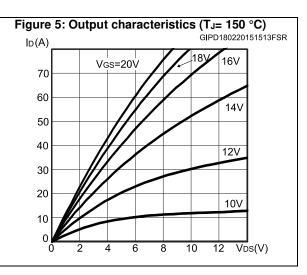
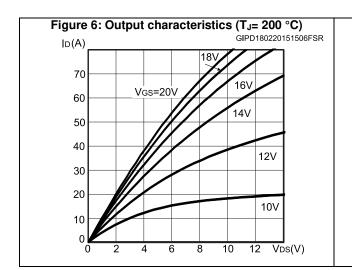
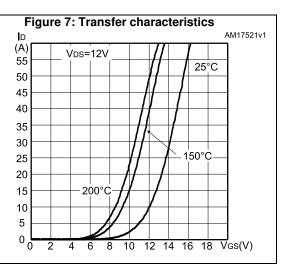
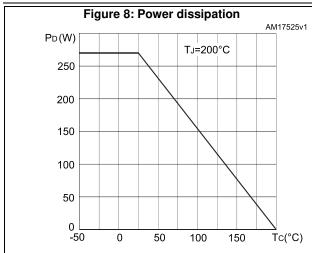

	-					
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)} v	Turn-on delay time		1	19	1	ns
t _{f(V}	Fall time	$V_{DD} = 800 \text{ V}, I_D = 20 \text{ A},$	-	28	-	ns
t _{d(off)} v	Turn-off-delay time	$R_G = 0 \Omega$, $V_{GS} = 0$ to 20 V	-	45	-	ns
t _{r(V)}	Rise time		-	20	-	ns

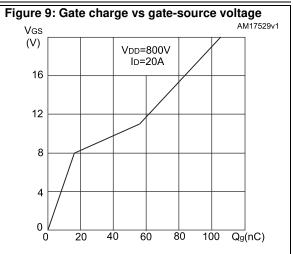
SCTWA30N120 Electrical characteristics

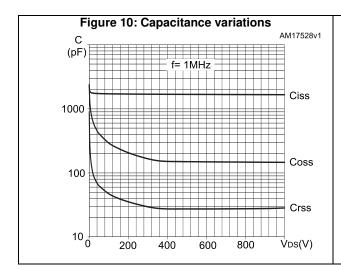
Table 8: Reverse SiC diode characteristics

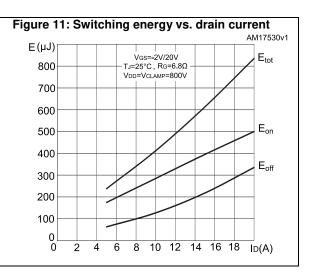
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
V _{SD}	Diode forward voltage $I_F = 10 \text{ A}, V_{GS} = 0 \text{ V}$		1	3.5	1	V
t _{rr}	Reverse recovery time			140	-	ns
Qrr	Reverse recovery charge $I_{SD} = 20 \text{ A}$, di/dt = 100 A/ μ s $V_{DD} = 800 \text{ V}$		-	140		nC
I _{RRM}	Reverse recovery current	VDD= 000 V	-	2		Α

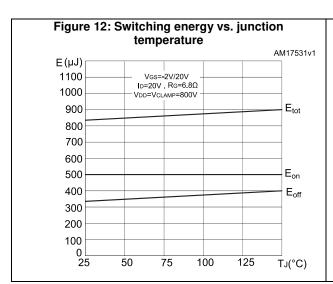
2.1 Electrical characteristics (curves)

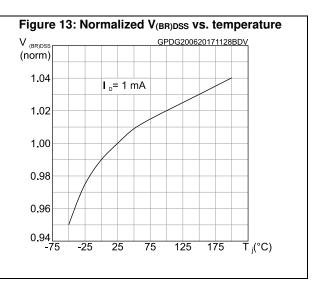







Figure 4: Output characteristics (T_J= 25 °C) I_D(A) Vgs=20V 18V 70 60 16V 50 40 30 14V 20 10 12V 10V Vps(V)









1.0

0.8

Figure 14: Normalized gate threshold voltage vs. temperature

V (GS(III) (NORM)

(NORM)

I D= 1 mA

1.2

25

-25

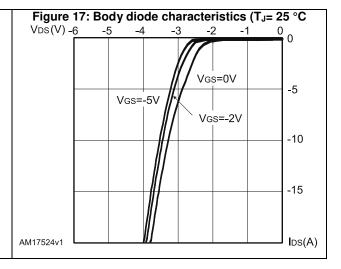
75

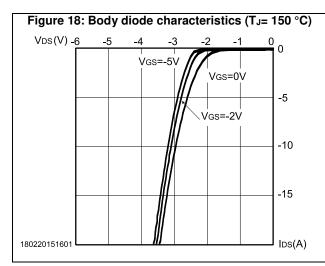
125

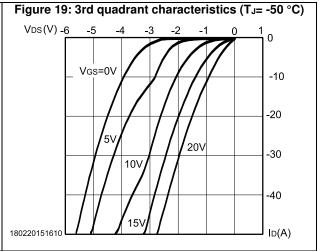
175

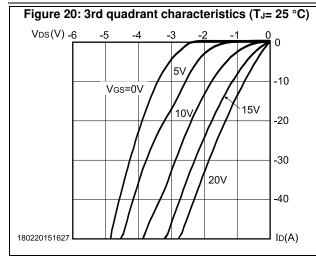
T_i(°C)

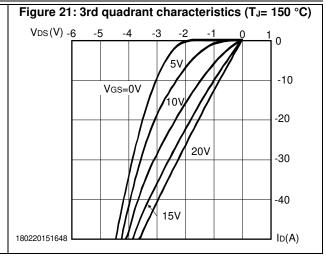
Figure 15: Normalized on-resistance vs. temperature


R DS(on) (NORM)


2.0 V GS= 20 V


1.5


1.0 0.5


0.0 -75 -25 25 75 125 175 T (°C)

3 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

3.1 HiP247 long leads package information

Figure 22: HiP247™ long leads package outline

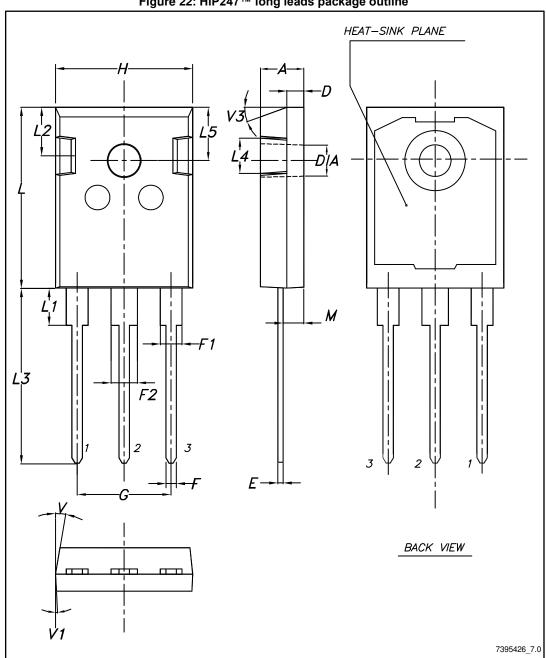


Table 9: HiP247™ long leads package mechanical data

	iong iona	mm	
Dim.	Min.	Тур.	Max.
А	4.90		5.15
D	1.85		2.10
Е	0.55		0.67
F	1.07		1.32
F1	1.90		2.38
F2	2.87		3.38
G		10.90 BSC	
Н	15.77		16.02
L	20.82		21.07
L1	4.16		4.47
L2	5.49		5.74
L3	20.05		20.30
L4	3.68		3.93
L5	6.04		6.29
М	2.25		2.55
V		10°	
V1		3°	
V3		20°	
DIA	3.55		3.66

Revision history SCTWA30N120

Revision history 4

Table 10: Document revision history

Date	Revision	Changes
11-Jan-2016	1	First release.
19-Jun-2017	2	Updated title, features in cover page. Minor text edit in Section 1: "Electrical ratings" and Section 2: "Electrical characteristics". Updated Figure 2: "Safe operating area", Figure 3: "Thermal impedance", Figure 13: "Normalized V(BR)DSS vs. temperature", Figure 14: "Normalized gate threshold voltage vs. temperature" and Figure 15: "Normalized on-resistance vs. temperature". Document status promoted from preliminary to production data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved