

Half-Bridge Driver

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600V
- Tolerant to negative transient voltage
- dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- 3.3V, 5V and 15V logic compatible
- Cross-conduction prevention logic
- · Matched propagation delay for both channels
- Internal set deadtime
- High side output in phase with HIN input
- Low side output out of phase with LIN input

Product Summary

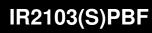
V _{OFFSET} (max)	600V
I _{O+/-}	130mA / 270mA
V _{OUT}	10V – 20V
ton/off (typ.)	680 & 150 ns
Deadtime (typ.)	520 ns

Description

The IR2103(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Package Options

8 Lead SOIC


8 Lead PDIP

Ordering Information

www.irf.com

Dogo Dout Number		Standar	d Pack	Oudenable Deat Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	
IR2103SPBF	SO8N	Tube	95	IR2103SPBF	
IR2103SPBF	SO8N	Tape and Reel	2500	IR2103STRPBF	
IR2103PBF	PDIP8	Tube	50	IR2103PBF	

© 2013 International Rectifier April 18, 2013

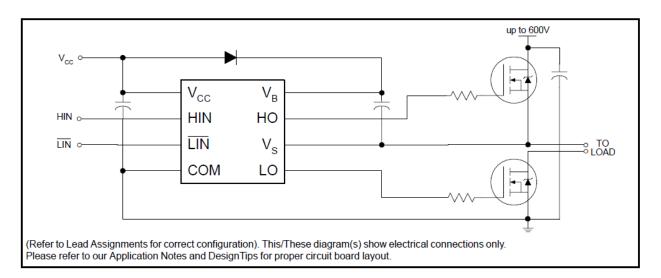


Table of Contents	Page
Description	1
Ordering Information	1
Typical Connection Diagram	3
Absolute Maximum Ratings	4
Recommended Operating Conditions	4
Dynamic Electrical Characteristics	5
Static Electrical Characteristics	5
Functional Block Diagrams	6
Lead Definitions	7
Lead Assignments	7
Application Information and Additional Details	8
Package Details: PDIP8, SO8N	15
Tape and Reel Details: SO8N	16
Part Marking Information	17
Qualification Information	18

Typical Connection Diagram

3 www.irf.com

© 2013 International Rectifier April 18, 2013

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating absolute voltage		-0.3	625	
V_S	High side floating supply offset voltage)	V _B - 25	$V_{B} + 0.3$	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	V
V _{CC}	Low side and logic fixed supply voltage	Э	-0.3	25	7
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN & LIN)	-0.3	V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transie	nt	_	50	V/ns
Б	Package power dissipation	8 lead PDIP	_	1	w
P_{D}	@ T _A ≤ +25°C	8 lead SOIC	_	0.625	7 VV
Dul	Thermal resistance, junction to	8 lead PDIP	_	125	°C/W
KINJA	Rth _{JA} ambient		_	200	7
TJ	Junction temperature	_	150		
T _S	Storage temperature		-55	150	ം
T _L	Lead temperature (soldering, 10 secon	nds)		300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating absolute voltage	V _S + 10	V _S + 20	
V _S	High side floating supply offset voltage	†	600	
V _{HO}	HO High side floating output voltage		V _B	V
V _{CC}	Low side and logic fixed supply voltage	10	20	V
V_{LO}	V _{LO} Low side output voltage		V _{CC}	
V _{IN}	Logic input voltage (HIN & LIN)	0	V _{CC}	
T _A	Ambient temperature	-40	125	°C

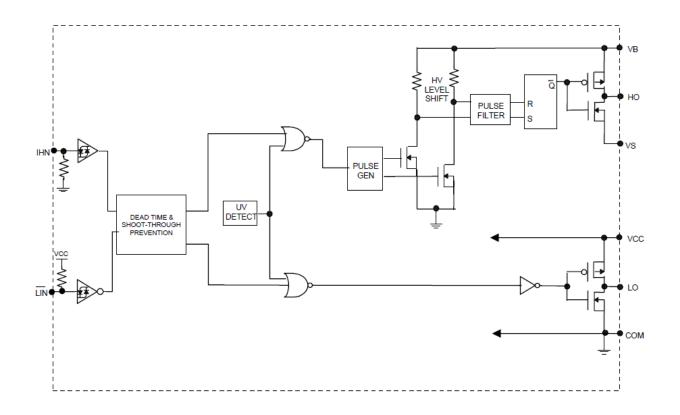
[†] Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	680	820		$V_S = 0V$
t _{off}	Turn-off propagation delay	_	150	220		$V_{S} = 600V$
t _r	Turn-on rise time	_	100	170		
t _f	Turn-off fall time	_	50	60	ns	
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	400	520	650		
MT	Delay matching, HS & LS turn on/off	_	_	60		

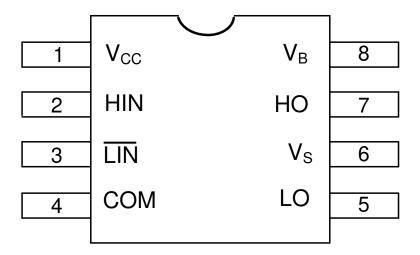
Static Electrical Characteristics


 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

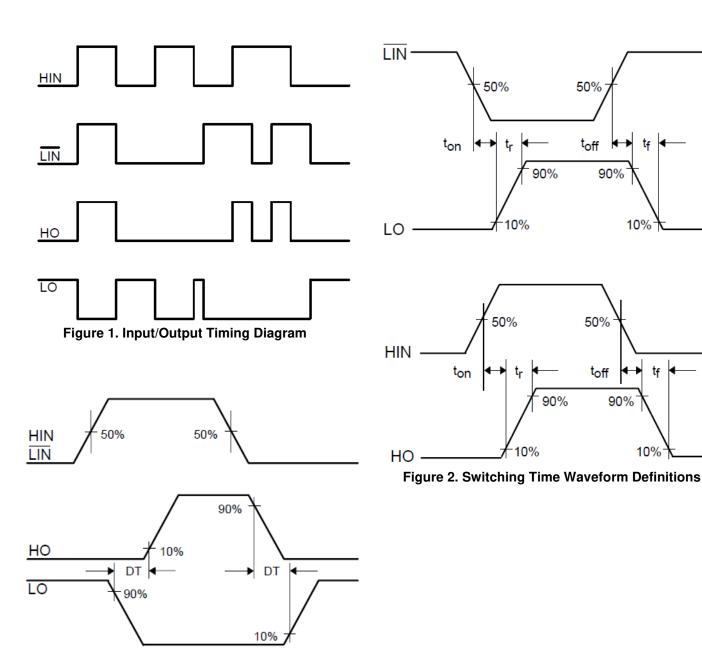
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" (HIN) & Logic "0" (LIN) input voltage	3	_	_	V	V _{CC} = 10V to 20V
V _{IL}	Logic "0" (HIN) & Logic "1" (LIN) input voltage	_		0.8	V	V _{CC} = 10V to 20V
V_{OH}	High level output voltage V _{BIAS} - V _O	_	_	100	mV	$I_O = 0A$
V_{OL}	Low level output voltage, VO	_		100	111 V	$I_O = 0A$
I _{LK}	Offset supply leakage current	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} supply current	_	30	55		$V_{IN} = 0V \text{ or } 5V$
IQCC	Quiescent V _{CC} supply current		150	270	μΑ	$V_{IN} = 0V \text{ or } 5V$
I_{IN+}	Logic "1" input bias current	_	3	10		$H_{IN} = 5V$, L1N = 0V
I _{IN-}	Logic "0" input bias current	_	_	1		$H_{IN} = 0V$, LTN =5V
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8	8.9	9.8	\ \	
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9	V	
I _{O+}	Output high short circuit pulsed current	130	210	_	- mA	$V_O = 0V$, $V_{IN} = V_{IH}$ $PW \le 10 \mu s$
I _{O-}	Output low short circuit pulsed current	270	360		IIIA	$V_O = 15V$, $V_{IN} = V_{IL}$ $PW \le 10 \mu s$

© 2013 International Rectifier April 18, 2013

Functional Block Diagram



Lead Definitions


Symbol	Description
HIN	Logic input for high side gate driver output (HO), in phase
LIN	Logic input for low side gate driver output (LO), out of phase
V _B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
V _{CC}	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Application Information and Additional Details

Figure 3. Deadtime Waveform Definitions

www.irf.com

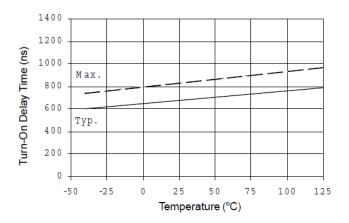


Figure 4A. Turn-On Time vs. Temperature

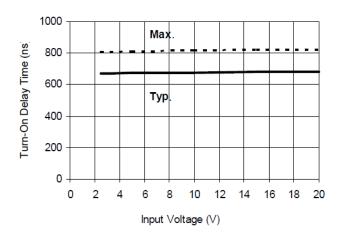


Figure 4C. Turn-On Time vs. Input Voltage

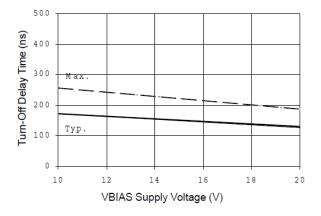


Figure 5B. Turn-Off Time vs. Supply Voltage

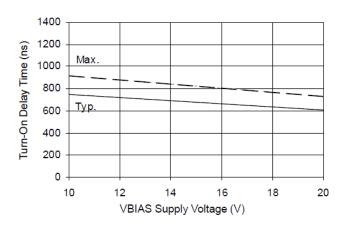


Figure 4B. Turn-On Time vs. Supply Voltage

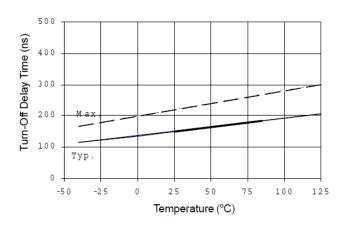


Figure 5A. Turn-Off Time vs. Temperature

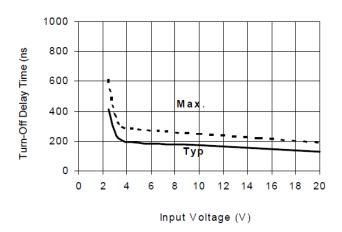
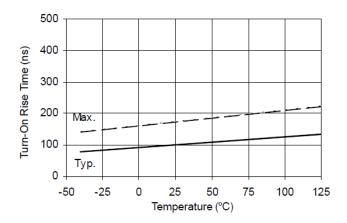



Figure 5C. Turn-Off Time vs. Input Voltage

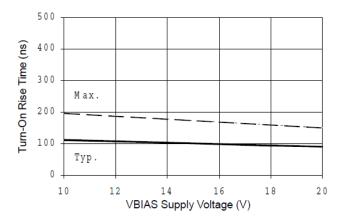
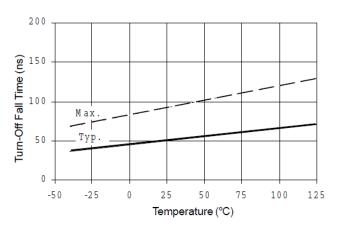



Figure 6A. Turn-On Rise Time vs. Temperature

Figure 6B. Turn-On Rise Time vs. Voltage

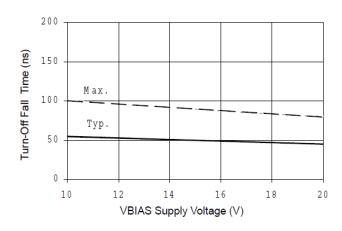
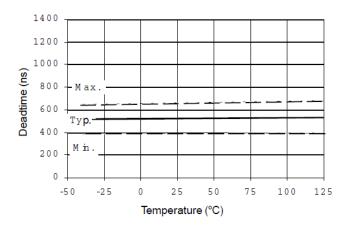



Figure 7A. Turn Off Fall Time vs. Temperature

Figure 7B. Turn Off Fall Time vs. Voltage

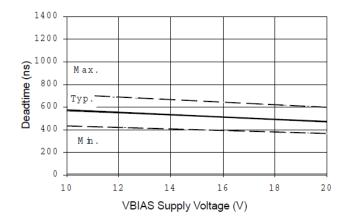
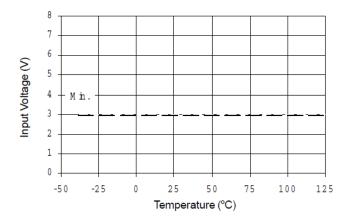



Figure 8A. Deadtime vs. Temperature

Figure 8B. Deadtime vs. Voltage

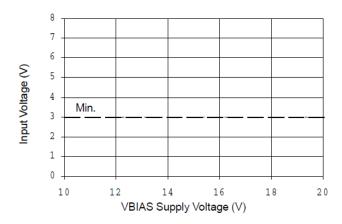
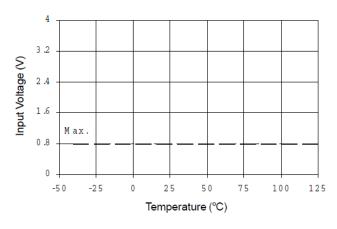



Figure 9A. Logic "1" (HIN) & Logic "0" (LIN) Input Voltage vs. Temperature

Figure 9B. Logic "1" (HIN) & Logic "0" (LIN) Input Voltage vs. Voltage

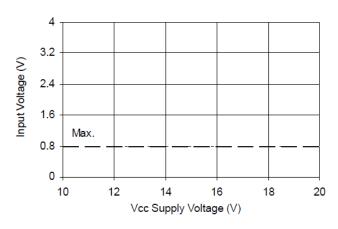
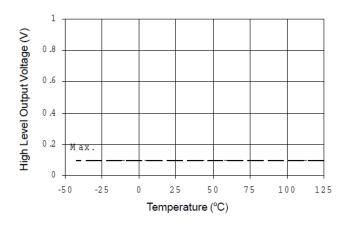



Figure 10A. Logic "0" (HIN)) & Logic "1" (LIN) Input Voltage vs. Temperature

Figure 10B. Logic "0" (HIN) & Logic "1" (LIN) Input Voltage vs. Voltage

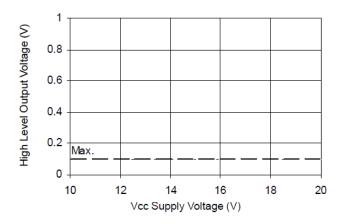


Figure 11A. High Level Output vs. Temperature

Figure 11B. High Level Output vs. Voltage

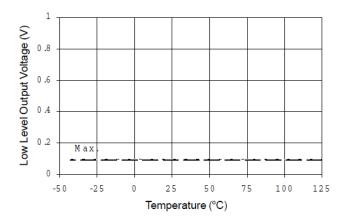


Figure 12A. Low Level Output vs. Temperature

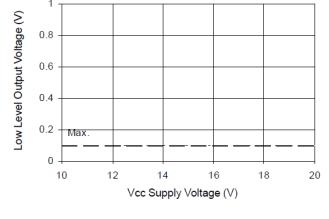


Figure 12B. Low Level Output vs. Voltage

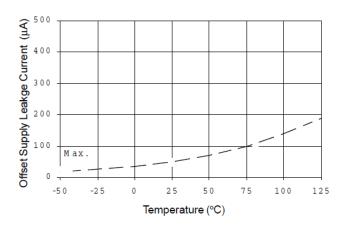


Figure 13A. Offset Supply Current vs. Temperature

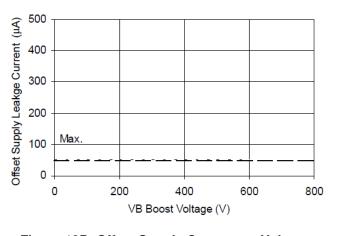


Figure 13B. Offset Supply Current vs. Voltage

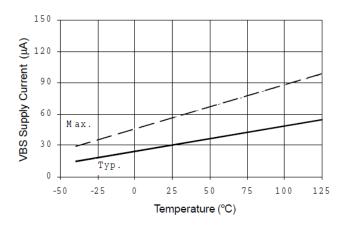


Figure 14A. V_{BS} Supply Current vs. Temperature

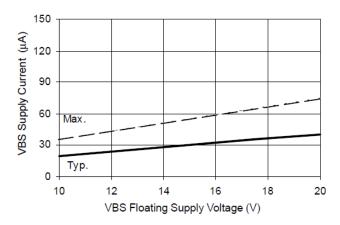
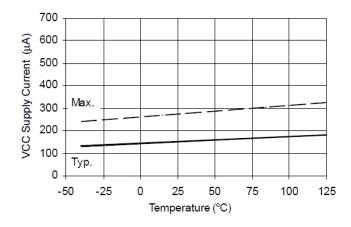



Figure 14B. V_{BS} Supply Current vs. Voltage

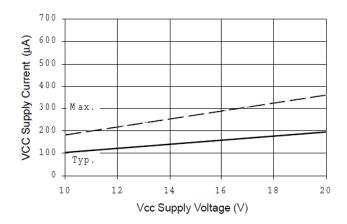
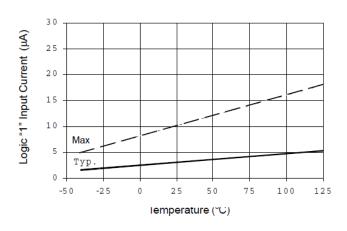



Figure 15A. V_{CC} Supply Current vs. Temperature

Figure 15B. V_{CC} Supply Current vs. Voltage

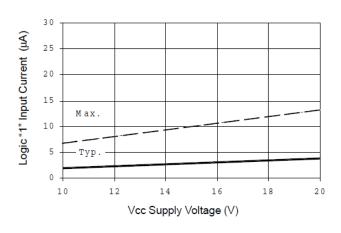
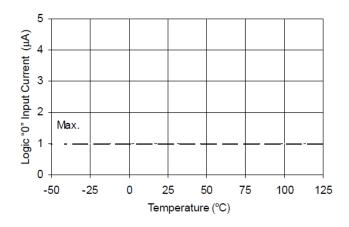



Figure 16A. Logic "1" Input Current vs. Temperature

Figure 16B. Logic "1" Input Current vs. Voltage

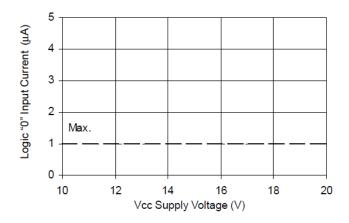


Figure 17A. Logic "0" Input Current vs. Temperature

Figure 17B. Logic "0" Input Current vs. Voltage

500

400

300

200

100

Тур

-25

0

Μin

-50

Output Source Current (mA)

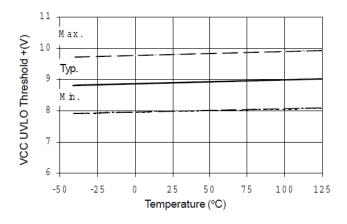


Figure 18A. V_{CC} Undervoltage Threshold (+) vs.

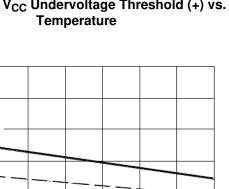


Figure 19A. Output Source Current vs. Temperature

Temperature (°C)

50

75

100

125

25

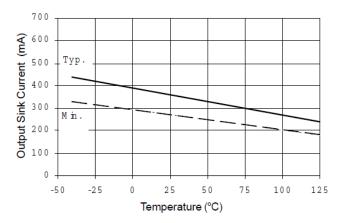


Figure 20A. Output Sink Current vs. Temperature

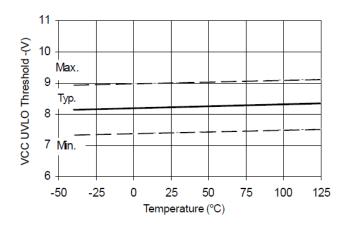


Figure 18B. V_{CC} Undervoltage Threshold (-) vs. **Temperature**

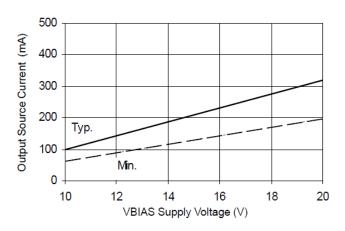


Figure 19B. Output Source Current vs. Voltage

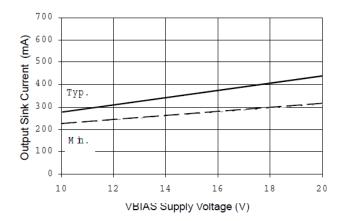
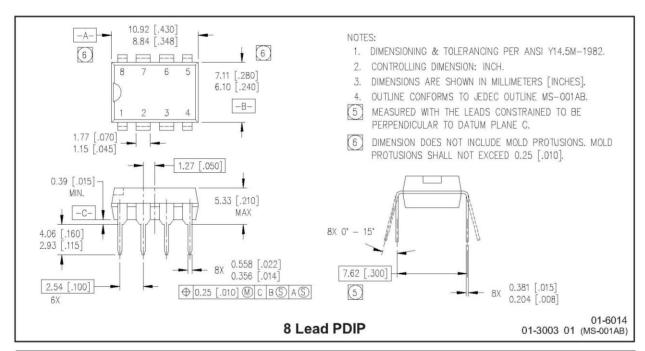
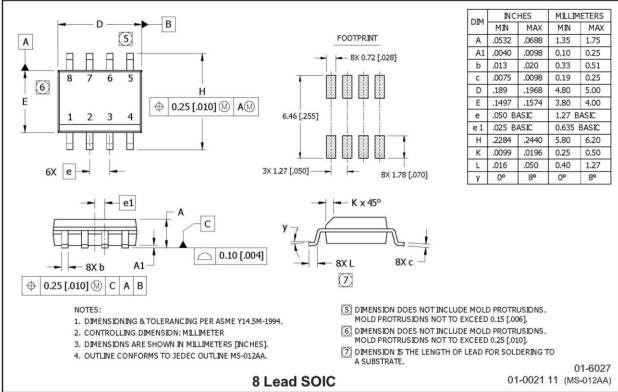
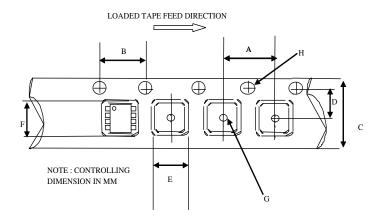
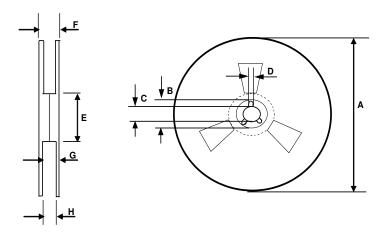




Figure 20A. Output Sink Current vs. Voltage

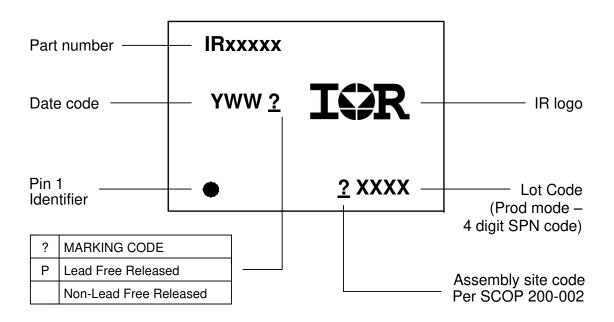

Package Details: PDIP8, SO8N



Tape and Reel Details: SO8N

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 8SOICN

	Metric		Imperial	
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
D E F	98.00	102.00	3.858	4.015
	n/a	18.40	n/a	0.724
G H	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

Qualification Information[†]

		Industrial ^{††} (per JEDEC JESD 47)			
Qualification Level	Comments: This family	Comments: This family of ICs has passed JEDEC's			
		Industrial qualification. IR's Consumer qualification level is			
	granted by extension of the	granted by extension of the higher Industrial level.			
	SOIC8N	MSL2 ^{†††}			
Moisture Sensitivity Level	3010011	(per IPC/JEDEC J-STD 020)			
Moisture Sensitivity Level	PDIP8	Not applicable			
	1 011 0	(non-surface mount package style)			
RoHS Compliant		Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105