onsemi

Automotive 750 V, 820 A Single Side Direct Cooling 6-Pack Power Module

VE-Trac[™] Direct Module NVH820S75L4SPB

Product Description

The NVH820S75L4SPB is a power module from the VE–Trac[™] Direct family of highly integrated power modules with industry standard footprints for Hybrid (HEV) and Electric Vehicle (EV) traction inverter application.

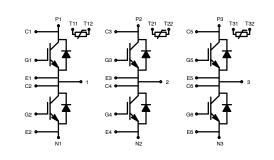
The module integrates six Field Stop 4 (FS4) 750 V Narrow Mesa IGBTs in a 6-pack configuration, which excels in providing high current density, while offering robust short circuit protection and increased blocking voltage. Additionally, FS4 750 V Narrow Mesa IGBTs show low power losses during lighter loads, which helps to improve overall system efficiency in automotive applications.

For assembly ease and reliability, a new generation of press–fit pins are integrated into the power module signal terminals. In addition, the power module has an optimized pin–fin heatsink in the baseplate.

Features

- Direct Cooling w/ Integrated Pin-fin Heatsink
- Ultra-low Stray Inductance
- T_{vjmax} = 175°C Continuous Operation
- Low V_{CESAT} and Switching Losses
- Automotive Grade FS4 750 V Narrow Mesa IGBT
- Fast Recovery Diode Chip Technologies
- 4.2 kV Isolated DBC Substrate
- Easy to Integrate 6-pack Topology
- This Device is Pb-Free and is RoHS Compliant

Typical Applications


- Hybrid and Electric Vehicle Traction Inverter
- High Power Converters

SSDC33, 154.50x92.0 (SPB) CASE 183AB

MARKING DIAGRAM

XXXXX = Specific Device Code AT = Assembly & Test Site Code YYWW= Year and Work Week Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Pin Description

Figure 1. Pin Description

PIN FUNCTION DESCRIPTION

Pin #	Pin Function Description
P1, P2, P3	Positive Power Terminals
N1, N2, N3	Negative Power Terminals
1	Phase 1 Output
2	Phase 2 Output
3	Phase 3 Output
G1–G6	IGBT Gate
E1–E6	IGBT Gate Return
C1-C6	Desat Detect/Collector Sense
T11, T12	Phase 1 Temperature Sensor Output
T21, T22	Phase 2 Temperature Sensor Output
T31, T32	Phase 3 Temperature Sensor Output

Materials

DBC Substrate: Al₂O₃ isolated substrate, basic isolation, and copper on both sides Terminals: Copper + Tin electro-plating Signal Leads: Copper + Tin plating Pin-fin Base plate: Copper + Ni plating

Flammability Information

The module frame meets UL94V-0 flammability rating.

MODULE CHARACTERISTICS (T_{vj} = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Rating	Unit
T _{vj}	Operating Junction Temperature	-40 to 175	°C
T _{STG}	Storage Temperature	-40 to 125	°C
V _{ISO}	Isolation Voltage (DC, 0 Hz, 1 s)	4200	V
L _{sCE}	Stray Inductance	8	nH
RCC'+EE'	Module Lead Resistance, Terminals - Chip	0.75	mΩ
G	Module Weight	700	g
CTI	Comparative Tracking Index	>200	-
d _{creep}	Creepage: Terminal to Heatsink Terminal to Terminal	9.0 9.0	mm
d _{clear}	Clearance: Terminal to Heatsink Terminal to Terminal	4.5 4.5	mm

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
Δp	Pressure Drop in Cooling Circuit	10 L/min, 65°C, 50/50 EGW	-	95	-	mbar
P (Note 1)	Maximum Pressure in Cooling Loop (relative)	T _{Baseplate} < 40°C T _{Baseplate} > 40°C	-		2.5 2.0	bar

1. EPDM rubber 50 durometer 'O' ring used.

ABSOLUTE MAXIMUM RATINGS (T_{vj} = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Rating	Unit
вт			
V _{CES}	Collector to Emitter Voltage	750	V
V _{GES}	Gate to Emitter Voltage	±20	V
I _{CN}	Implemented Collector Current	820	А
I _{C nom}	Continuous DC Collector Current, T_{vj} = 175°C, T_F = 65°C, Ref. Heatsink	600 (Note 2)	А
I _{CRM}	Pulsed Collector Current @ V_{GE} = 15 V, t_p =1 ms	1640	А
P _{tot}	Total Power Dissipation T_{vi} = 175°C, T_F = 65°C, Ref. Heatsink	1000	W

Diode

Diede			
V _{RRM}	Repetitive Peak Reverse Voltage	750	V
I _{FN}	Implemented Forward Current	820	А
١ _F	Continuous Forward Current, T_{vj} = 175°C, T_F = 65°C, Ref. Heatsink	400 (Note 2)	А
I _{FRM}	Repetitive Peak Forward Current, t _p = 1 ms	1640	А
l ² t value	Surge Current Capability, $t_p = 10 \text{ ms}$, $T_{vj} = 150^{\circ}\text{C}$ $T_{vj} = 175^{\circ}\text{C}$	19000 16000	A ² s

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.2. Verified by characterization/design, not by test.

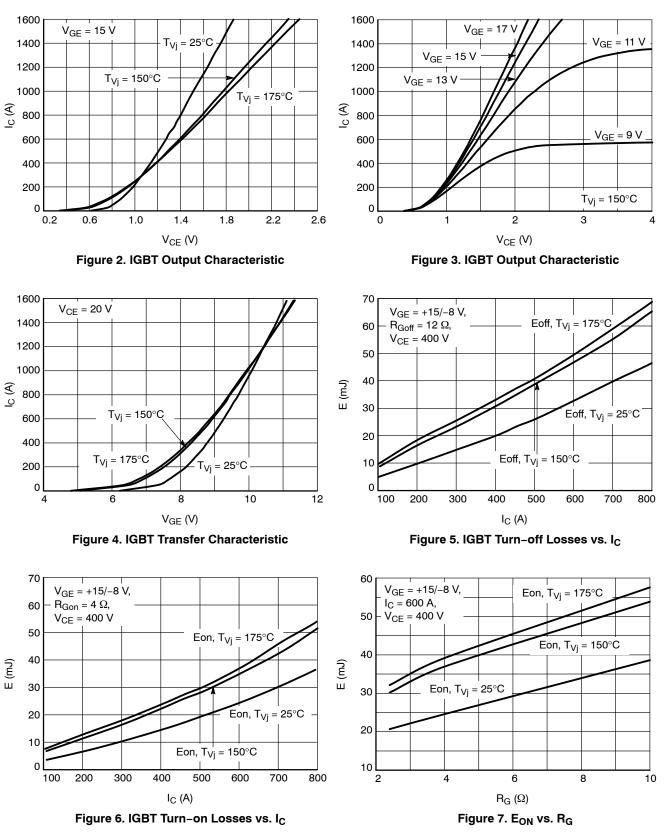
Symbol	Parameters	Condition	าร	Min	Тур	Max	Unit
V _{CESAT}	Collector to Emitter Saturation Voltage (Terminal)	V_{GE} = 15 V, I _C = 600 A	T _{vj} = 25°C	-	1.30	1.55	V
	Collector to Emitter Saturation Voltage (Chip)	V _{GE} = 15 V, I _C = 600 A	$\begin{array}{l} T_{vj} = 25^{\circ}C \\ T_{vj} = 150^{\circ}C \\ T_{vj} = 175^{\circ}C \end{array}$	_ _ _	1.25 1.37 1.40	1.50 _ _	
		V _{GE} = 15 V, I _C = 820 A	$\begin{array}{l} T_{vj} = 25^{\circ}C \\ T_{vj} = 150^{\circ}C \\ T_{vj} = 175^{\circ}C \end{array}$	_ _ _	1.40 1.59 1.63	- - -	
I _{CES}	Collector to Emitter Leakage Current	V _{GE} = 0, V _{CE} = 750 V	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$		_ 2.0	500 -	μA mA
I _{GES}	Gate – Emitter Leakage Current	V_{CE} = 0, V_{GE} = ±20 V	•	_	-	300	nA
V _{th}	Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 90 \text{ mA}$		4.8	5.7	6.6	V
Q_{G}	Total Gate Charge	$V_{GE=}$ -8 to 15 V, V_{CE} = 400) V	_	2.3	_	μC
R _{Gint}	Internal Gate Resistance			-	1.7	-	Ω
C _{ies}	Input Capacitance	V_{CE} = 30 V, V_{GE} = 0 V, f =	100 kHz	-	60	-	nF
Coes	Output Capacitance	V_{CE} = 30 V, V_{GE} = 0 V, f =	100 kHz	-	1.90	-	nF
C _{res}	Reverse Transfer Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f = 100 kHz		-	0.2	_	nF
T _{d.on}	Turn On Delay, Inductive Load	$ I_{C} = 600 \text{ A}, V_{CE} = 400 \text{ V}, \\ V_{GE} = +15/-8 \text{ V}, \\ R_{g.on} = 4 \Omega $	$\begin{array}{l} T_{vj} = 25^{\circ}C \\ T_{vj} = 150^{\circ}C \\ T_{vj} = 175^{\circ}C \end{array}$	_ _ _	315 320 322	- - -	ns
T _r	Rise Time, Inductive Load	$ I_{C} = 600 \text{ A}, V_{CE} = 400 \text{ V}, \\ V_{GE} = +15/-8 \text{ V}, \\ R_{g.on} = 4 \Omega $	$\begin{array}{l} T_{vj} = 25^{\circ}C \\ T_{vj} = 150^{\circ}C \\ T_{vj} = 175^{\circ}C \end{array}$	_ _ _	108 127 132	- - -	ns
T _{d.off}	Turn Off Delay, Inductive Load	$ I_{C} = 600 \text{ A}, V_{CE} = 400 \text{ V}, \\ V_{GE} = +15/-8 \text{ V}, \\ R_{g.off} = 12 \Omega $	$\begin{array}{l} T_{vj} = 25^{\circ}C \\ T_{vj} = 150^{\circ}C \\ T_{vj} = 175^{\circ}C \end{array}$	_ _ _	1063 1196 1203	- - -	ns
T _f	Fall Time, Inductive Load	$\label{eq:lc} \begin{array}{l} I_{C} = 600 \text{ A}, \ V_{CE} = 400 \text{ V}, \\ V_{GE} = +15/\!-\!8 \text{ V}, \\ R_{g.off} = 12 \ \Omega \end{array}$	$\begin{array}{l} T_{vj} = 25^\circ C \\ T_{vj} = 150^\circ C \\ T_{vj} = 175^\circ C \end{array}$	- - -	85 144 151	- - -	ns
E _{on}	Turn–On Switching Loss (Including Diode Reverse Recovery Loss)	$\begin{array}{l} {\sf I}_{C} = 600 \; {\sf A}, \; {\sf V}_{CE} = 400 \; {\sf V}, \\ {\sf V}_{GE} = +15/\!\!-\!8 \; {\sf V}, \\ {\sf Ls} = 22 \; n{\sf H}, \; {\sf R}_{g.on} = 4 \; \Omega \end{array}$	di/dt = 4.5 A/ns, $T_{vj} = 25^{\circ}\text{C}$ di/dt = 3.9 A/ns,	_	26 36	-	mJ
			$\begin{array}{l} T_{vj} = 150^\circ C\\ di/dt = 3.6 \text{ A/ns},\\ T_{vj} = 175^\circ C \end{array}$	_	38	-	
E _{off}	Turn-Off Switching Loss	$I_{C} = 600 \text{ A}, V_{CE} = 400 \text{ V},$ $V_{GE} = +15/-8 \text{ V},$	dv/dt = 2.7 V/ns, $T_{vj} = 25^{\circ}C$	-	33	-	mJ
		Ls = 22 nH, $R_{g,off}$ = 12 Ω	dv/dt = 1.9 V/ns, T _{vj} = 150°C dv/dt = 1.9 V/ns, T _{vj} = 175°C	-	46 50	-	
E _{SC}	Minimum Short Circuit Energy Withstand	V _{GE} = 15 V, V _{CC} = 400 V	T _{vj} = 25°C T _{vj} = 175°C	9 4.5			J

CHARACTERISTICS OF IGBT (T_{vj} = 25°C, Unless Otherwise Specified)

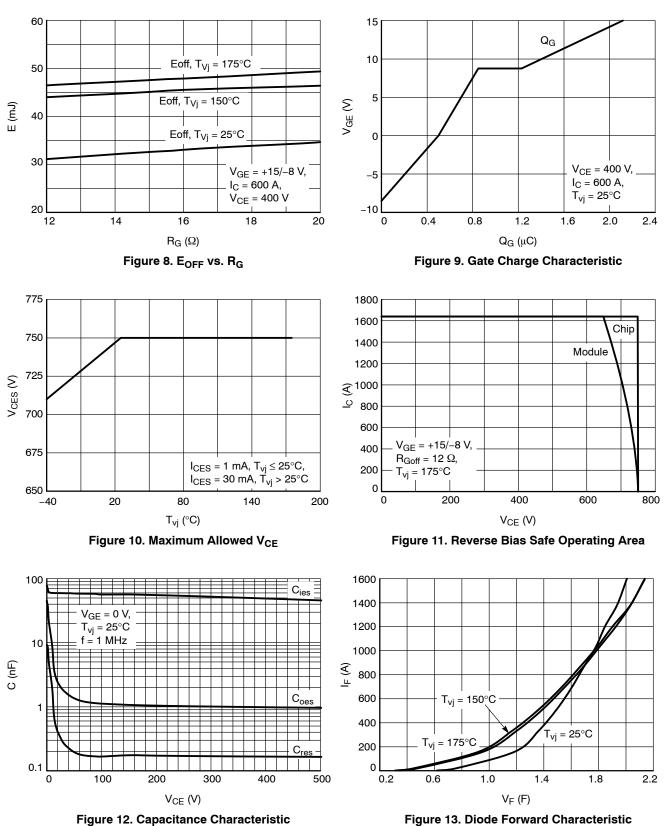
Symbol	Parameters	Parameters Conditions		Min	Тур	Max	Unit
V _F	Diode Forward Voltage (Terminal)	I _F = 600 A	$T_{vj} = 25^{\circ}C$	-	1.70	1.95	V
	Diode Forward Voltage (Chip)	I _F = 600 A	$\begin{array}{l} T_{vj} = 25^{\circ}C \\ T_{vj} = 150^{\circ}C \\ T_{vj} = 175^{\circ}C \end{array}$	_ _ _	1.60 1.55 1.50	1.85 - -	
		I _F = 820 A	$\begin{array}{l} T_{vj} = 25^{\circ}C \\ T_{vj} = 150^{\circ}C \\ T_{vj} = 175^{\circ}C \end{array}$	- - -	1.70 1.70 1.65	- - -	
E _{rr}	Reverse Recovery Energy	$I_{F} = 600 \text{ A}, V_{R} = 400 \text{ V}, \\ V_{GE} = -8 \text{ V}, \\ R_{g.on} = 4 \Omega$		-	3 9	-	mJ
			di/dt = 3.6 A/ns, T _{vj} = 175°C	-	11	-	
Q _{rr}	Recovered Charge	$I_F = 600 \text{ A}, V_R = 400 \text{ V}, V_{GE} = -8 \text{ V},$	di/dt = 4.5 A/ns, T _{vj} = 25°C	-	9	-	μC
		$R_{g.on} = 4 \Omega$	di/dt = 3.9 A/ns, T _{vj} = 150°C di/dt = 3.6 A/ns,	-	32 39	-	
			$T_{vj} = 175^{\circ}C$				
l _{rr}	Peak Reverse Recovery Current	$I_F = 600 \text{ A}, V_R = 400 \text{ V}, V_{GE} = -8 \text{ V},$	di/dt = 4.5 A/ns, T _{vj} = 25°C	-	133	-	A
		$R_{g.on} = 4 \Omega$	di/dt = 3.9 A/ns, T _{vj} = 150°C	-	246	-	
			di/dt = 3.6 A/ns, T _{vj} = 175°C	-	282	-	

CHARACTERISTICS OF INVERSE DIODE (T_{vj} = 25°C, Unless Otherwise Specified)

NTC SENSOR CHARACTERISTICS (Tvj = 25°C, Unless Otherwise Specified)

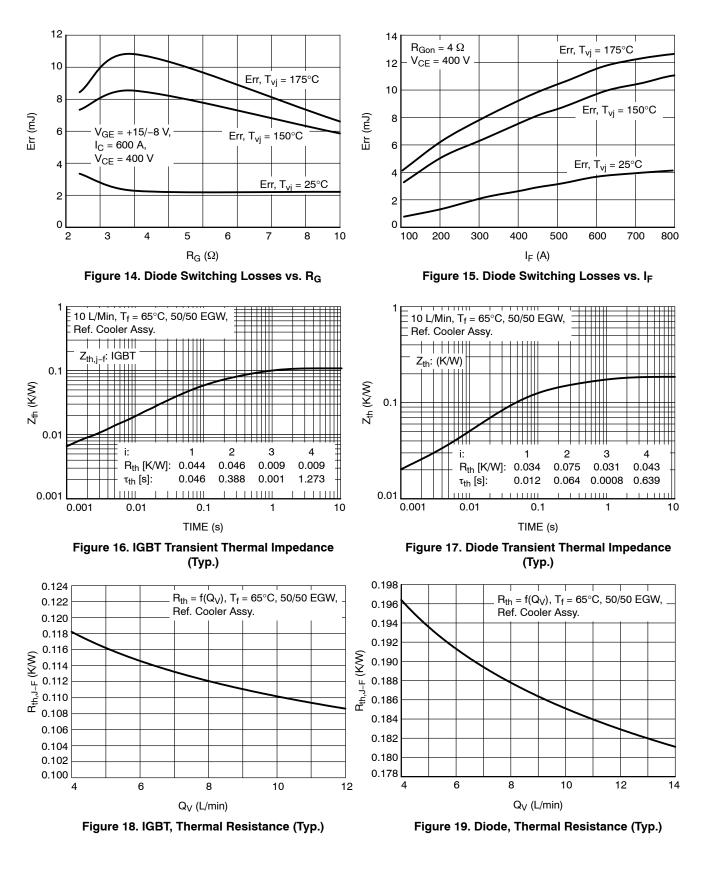

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
R ₂₅ (Note 3)	Rated Resistance	$T_{\rm C} = 25^{\circ}{\rm C}$	-	5	-	kΩ
$\Delta R/R$	Deviation of R100	T_{C} = 100°C, R_{100} = 493 Ω	5	_	5	%
P ₂₅	Power Dissipation	$T_{\rm C} = 25^{\circ}{\rm C}$	-	-	20	mW
B _{25/50}	B-Value	$R = R_{25} \exp \left[B_{25/50} \left(1/T - 1/298 \right) \right]$	-	3375	-	К
B _{25/80}	B-Value	$R = R_{25} \exp \left[B_{25/80} \left(1/T - 1/298 \right) \right]$	-	3411	-	К
B _{25/100}	B-Value	$R = R_{25} \exp \left[B_{25/100} \left(1/T - 1/298 \right) \right]$	-	3433	-	К

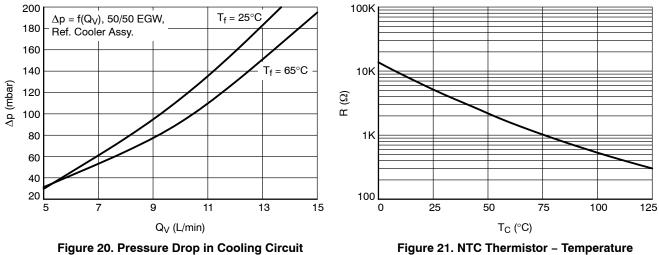
THERMAL CHARACTERISTICS


Symbol	Parameter	Min	Тур	Max	Unit
IGBT.R _{th,J-F}	Rth, Junction to Fluid, 10 L/min, 65°C, 50/50 EGW	-	0.11	0.13	°C/W
Diode.R _{th,J-F}	Rth, Junction to Fluid, 10 L/min, 65°C, 50/50 EGW	-	0.185	0.20	°C/W

ORDERING INFORMATION

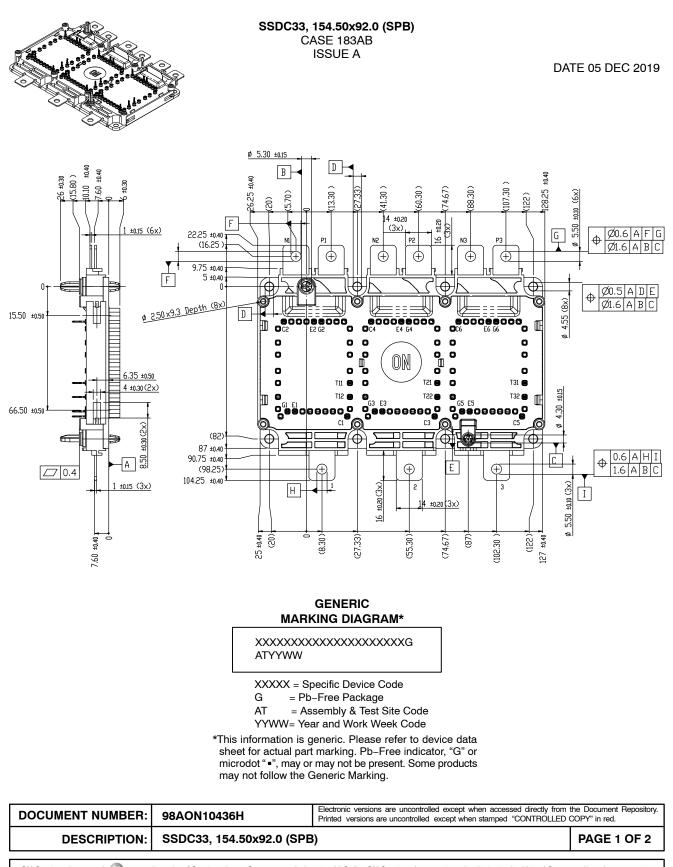
Part Number	Package	Shipping
NVH820S75L4SPB	SSDC33, 154.50x92.0 (SPB) (Pb-Free)	4 Units / Tray


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

igure 21. NTC Thermistor – Temperatur Characteristic (Typical)

VE-Trac is a of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales