

TEXT DISPLAY 4x20 - 6.45mm

Issue 3.2023

INCL. CONTROLLER RW1073

FEATURES

- * HIGH-CONTRAST LCD-SUPERTWIST DISPLAY
- * BLUE BACKGROUD WITH WHITE CHARACTERS
- * BLACK&WHITE FSTN
- * EXTREME COMPACT WITH 75mm WIDTH
- * BUILT-IN CONTROLLER RW1073 (VERY SIMILAR TO SSD1803 AND HD44780)
- * 4- AND 8-BIT INTERFACE FOR DATABUS
- * SERIAL SPI-INTERFACE (SID, SOD, SCLK, CS)
- * POWER SUPPLY +3.3V / TYP. 4mA (w./o. B./L.)
- * ALTERNATIVELY +5V (NEED TO CHANGE 2 COMPONENTS)
- * OPERATING TEMP. RANGE -20..+70°C
- * AUTOMATIC TEMPERATURE COMPENSATION BUILT-IN
- * LED-BACKLIGHT WHITE, max. 75mA@+25°C
- * 16 ICONS (BATTERY, ARROWS ETC.) AT THE TOP EDGE
- * NO MONTING IS REQUIRED: JUST SOLDER INTO PCB
- * SINGLE ROW SOCKET AVAILABLE: EA B254-12 (1 PC.)
- * 128x64 GRAPHIC WITH SAME DIMENSION AND SAME PINOUT: EA DIP128

ORDERING INFORMATION

LCD-MODULE 4x20 - 6.45mm WITH LED-B./L. BLUE FSTN BLACK ON WHITE SOCKET 4.5mm HEIGHT, 12 POSITIONS (1 PC.)

EA DIP205B-6NLW EA DIP205J-6NLW EA B254-12

PINOUT

		4-/8-Bit Mod	e ((Fac	tory Set	
Pin	Symbol	Function		Pin	Symbol	Function
1	VSS	Pow er Supply 0V (GND)		13		not connected
2	VDD	Pow er Supply +3.3 V		14	VSS	Pow er Supply 0V (GND)
3	VCI	Contrast Adjustment		15	D0	Display Data, LSB
4	RES	L: Reset		16	D1	Display Data D1
5	RS	H=Data; L=Command		17	D2	Display Data D2
6	R/W	H=Read, L=Write		18	D3	Display Data D3
7	Е	Enable		19	D4 (D0)	Display Data D4
8		not connected		20	D5 (D1)	Display Data D5
9		not connected		21	D6 (D2)	Display Data D6
10		not connected		22	D7 (D3)	Display Data, MSB
11		not connected		23	Α	LED-B/L + (ext. Resistor requ)
12		not connected		24	С	LED-B/L -

		SPI Mode (Solde	ink '	sed)		
Pin	Symbol	Function		Pin	Symbol	Funktion
1	VSS	Pow er Supply 0V (GND)		13		not connected
2	VDD	Pow er Supply +3.3V		14	VSS	Pow er Supply 0V (GND)
3	VCI	Contrast Adjustment		15	SOD	Data Out
4	RES	L: Reset		16		not connected
5	CS	Chip Select		17		not connected
6	SID	Data In		18		not connected
7	SCLK	Shift Clock		19		not connected
8		not connected		20		not connected
9		not connected		21		not connected
10		not connected		22		not connected
11		not connected		23	Α	LED-B/L + (ext. Resistor requ)
12		not connected		24	С	LED-B/L -

BACKLIGHT

Using the LED backlight requires a current source or external current-limiting resistor. Forward voltage for white LED backlight is $2.8\sim3.4V$ (NICHIA LED NHSW157AT). Please take care of derating for $T_a>+50$ °C

<u>Attention:</u> Do never drive backlight directly to VDD; this may damage backlight immediately! The blue display cannot be read without backlight. For direct sunlight we suggest to use the J-type.

TABLE OF COMMAND (RW1073)

					Ins	tructio	n Co	de				2000	Execution
Instruction	RE	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time(fosc =270KHz)
Clear Display	х	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM, and set DDRAM address to "00H" from AC.	1.53ms
Return Home	0	0	0	0	0	0	0	0	0	1	х	Set DDRAM address "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Power Down Mode	1	0	0	0	0	0	0	0	0		PD	Set power down mode bit PD="1": power down mode set. PD="0": power down mode disable.	39uS
Entry Mode Set	0	0	0	0	0	0	0	0	1	I/D	s	Assign cursor moving direction, I/D=1"; increment I/D=1": decrement, and display shift enable bit. S=1": make display shift of the enabled lines by the DS4-DS1 bits in the Shift Enable instruction. S=10": display shift disable.	39uS
	1	0	0	0	0	0	0	0	1	1	BID	Segment bidirectional function. BID="1": Seg60->Seg1. BID="0": Seg1->Seg60.	Time(tosc =270KHz) 1.53ms 1.53ms 39uS
Display ON/OFF Control	0	0	0	0	0	0	0	1	D	С	В	Set display/oursor/blink on/off D="1": display on. D="0": display off. C="1": cursor on. C="0": cursor off. B="1": blink on. B="0": blink off.	39uS
Extended Function set	ended oction 1 0		0	0	0	0	0	1	FW	B/W	NW	Assign forr width; black/white inverting of cursor, and 4-line display mode bit. FW="1" 6-dot fort width. FW="1"; 6-dot fort width. BW="1"; black/white inverting of cursor disable. BW="0"; black/white inverting of cursor disable. NW="0"; -line display mode. NW="0"; -line display mode.	39uS

Instruction	RF				Inst	tructio	n Co	de	5			Description	Execution
mou ucu oli	KL	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time(fosc =270KHz)
Cursor or Display Shift	0	0	0	0	0	0	1	S/C	R/L	х	х	Cursor or display shift S/C="1": display shift. S/C="0": oursor shift R/L="1": shift to right. R/L="0": shift to left.	39uS
Shift Enable	1	0	0	0	0	0	1	DS4	DS3	DS2	DS1	(When DH="1") Determine the line for display shift. DS1="10": 1st line display shift enable/disable. DS2="10": 2 nd line display shift enable/disable. DS3="10": 3 nd line display shift enable/disable. DS3="10": 3 nd line display shift enable/disable.	39uS
Function Set	0	0	0	0	0	10	DL	N	RE (0)	DH	REV	Set interface data length, (DL=11: 8 bit, DL=10: 4bit), Number of display line when NW=10. (N=11: 2-line, N=10: 1-line), extension register, RE(0), shift enable. (DH=11: display disable), and reverse bit (REV=11: reverse display. REV=10: normal display).	39uS
	1	0	0	0	D	1	DL	N	RE (1)	BE	0	Set DL,N,RE("1") and CGRAM/SEGRAM blink enable (BE) (BE="1": CGRAM/SEGRAM blink enable, BE="0": CGRAM/SEGRAM blink disable)	39uS
Set CGRAM Address	0	.0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39uS
Set SEGRAM Address	1	0	0	0	1	Х	Х	AC3	AC2	AC1	AC0	Set SEGRAM address in address counter.	39uS
Set DDRAM Address	0	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DORAM address in address counter.	39uS
Read Busy Flag and Address	x	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Can be known whether during internal operation or not by reading BF. The contents of address counter can also be read. (BF="1": busy state, BF="0": ready state)	0uS
Write Data	х	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAWCGRAM/ SEGRAM)	43uS
Read Data	х	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data into internal RAM (DDRAWCGRAM/ SEGRAM)	43uS

SERIAL MODE SPI

Factory set for interface is parallel with 4-bit or 8-bit data bus. Alternative module can be programmes with serial data stream. For that solder link **SPI** has to be closed. Harware specification for serial operation mode is written down in user manual for RW1073:

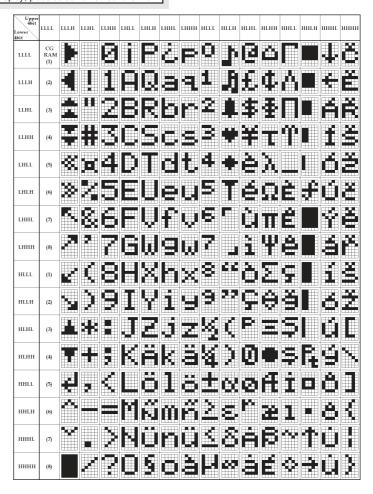
https://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/RW1073-0B-002 Rev0.0-20121029.pdf Software for initialisation and programming is same as for 8-bit.

			Exa	amı	ole	of i	niti	alis	atio	on,	8 b	it m	node and SPI
Command	RE Bit	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Note
Function Set	0	0	0	0	0	1	1	0	0	0	0	\$30	8 bit data length, extension bit RE=0
Entry Mode Set	0	0	0	0	0	0	0	0	1	1	0	\$06	Cursor Auto-Increment
Function Set	0	0	0	0	0	1	1	0	1	1	0	\$36	8 bit data length, RE =1, blink enable BE =1
ext. Function Set	1	0	0	0	0	0	0	1	0	0	1	\$09	4 line mode
Set SEGRAM adr	1	0	0	0	1	0	0	0	0	0	0	\$40	lcon RAM adress: \$00
16 x Write Data	1	1	0	0	0	0	0	0	0	0	0	\$00	to clear all icons: write 16x \$00
Function Set	1	0	0	0	0	1	1	0	0	0	0	\$30	8 bit data length, bit RE =0
Display ON/OFF	0	0	0	0	0	0	0	1	1	1	1	\$0F	Display on, Cursor on, Cursor blink
Clear Display	0	0	0	0	0	0	0	0	0	0	1	\$01	Clear display, place cursor to 1st. col. /1st. row

Adress:	
1st. line	\$00\$13
2nd. line	\$20\$33
3rd. line	\$40\$53
4th, line	\$60\$73

Please make shure that software will check busy-flag before writing any command!

CHARACTER SET


Beside there's a copy of built.in character set. In addition to that up to 8 individual character can be created.

CONTRAST ADJUSTMENT

Contrast will be set by pin 3 (VCI).

Module EA DIP205 comes with built-in temperature compensation for -20...+70°C as a standard; any contrast adjustment during operation is no longer required.

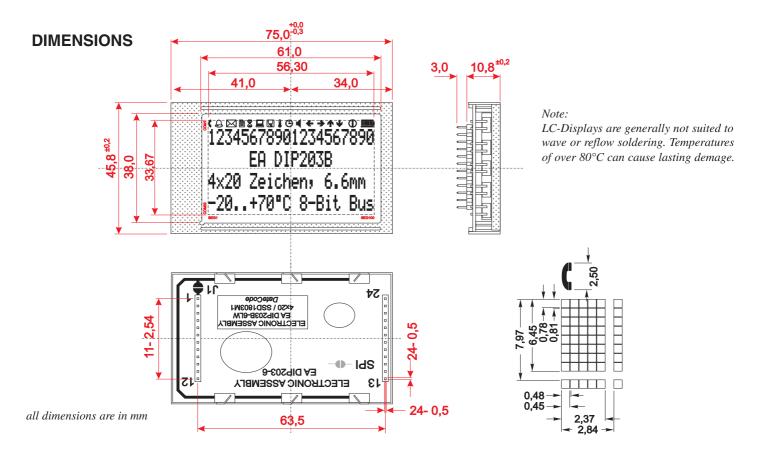
CREATING YOUR OWN CHARACTERS

All these character display modules got the feature to create 8 own characters (ASCII Codes 0..7) in addition to the 240 ROM fixed codes.

- 1.) The command "CG RAM Address Set" defines the ASCII code (Bit 3,4,5) and the dot line (Bit 0,1,2) of the new character. Example demonstrates creating ASCII code \$00.
- 2.) Doing 8 times the write command "Data Write" defines line by line the new character. 8th. byte stands for the cursor line.
- The newly defined character can be used as a "normal" ASCII code (0..7); use with "DD RAM Address Set" and "Data Write".

		S	et CO	R/	AM A	Add	Ires	s												Da	ata			
,			Adr		^			Hex									Bit							
			Aui	655	Е			Пех								7	6	5	4	3	2	1	0	Hex
					0	0	0	\$40											0	0	1	0	0	\$04
					0	0	1	\$41											0	0	1	0	0	\$04
l					0	1	0	\$42											0	0	1	0	0	\$04
	0		0 0	0	0	1	1	\$43								v	v	v	0	0	1	0	0	\$04
′	U	'	0 0	U	1	0	0	\$44								Χ	^	^	1	0	1	0	7	\$15
-					1	0	1	\$45											0	1	1	1	0	\$0E
					1	1	0	\$46											0	0	1	0	0	\$04
1					1	1	1	\$47											0	0	0	0	0	\$00

DRIVING WITH 5V-SYSTEMS


The supply voltage of the display ex work is 3.3V.

If a 5V-system is used, the display need to be modified by hand:

- remove C3
- add R5 with 0 ohms

COMPATIBILITY EA DIP203-6, DIP204-6 AND DIP205-6

The displays of DIP203, DIP204 and DIP205 series are electrically and mechanically identical to each other running with 3.3V supply mode. Merely a 5V supply is not acceptable with the EA DIP203 series.

DRIVING THE SYMBOLS

After power-on symbols will be set accidental. To switch off them all please refer to the example of initializing on page 3. To display an individual symbol have a look at the program example at the right.

Each symbol can be displayed in normal (solid) and blinking style.

		E	xan	nple	e pr	og	ram	ı to	dis	pla	ıy a	n ic	con (8 bit / SPI)					
Command	RE Bit	RS	R/W	DB7	Note													
Busy-Flag / Address read	0	0	1	BF				AC					perhaps store current DDRAM adress: read AC and save as LASTADR=AC					
Function Set	0	0	0	0	0	1	1	0	1	1	0	\$36	Set to 8 bit data length, RE=1, Blink enable BE=1					
Set SEGRAM adr	1	0	0	0	1	0	0	0	0	1	0	\$42	Set Icon-RAM adress to \$02 (letter symbol)					
Write Data	1	1	0	0	0	0	1	0	0	0	0	\$10	Write \$10 to display symbol					
Function Set	1	0	0	0	0	1	1	0	0	0	0	\$30	Set to 8 bit data length, extension bit RE=0					
Set DDRAM adr	0	0	0	1	LASTADR							\$80	Restore DDRAM adress					

							lco	n - S	ymb	ols										
															Ų					
SEGRAM address	\$00	\$01	\$02	\$03	\$04	\$05	\$06	\$07	\$08	\$09	\$0A	\$0B	\$0C	\$0D	\$0E	\$0F	\$0F	\$0F	\$0F	\$0F
data solid	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$1F	\$1E	\$1C	\$18	\$10
data blink (BE=1!)	\$50	\$50	\$50	\$50	\$50	\$50	\$50	\$50	\$50	\$50	\$50	\$50	\$50	\$50	\$50					\$50

Fon: +49 (0)8105-77 80 90 Fax: +49 (0)8105-77 80 99 e-Mail: info@lcd-module.de Web: www.lcd-module.com

