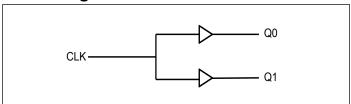


Industrial Grade Low-Skew, 1-to-2 LVCMOS/LVTTL Fanout Buffer

Features

- → Two LVCMOS/LVTTL Outputs
- → LVCMOS/LVTTL Clock Input Accepts LVCMOS or LVTTL Input Levels
- → Maximum Output Frequency: 250MHz
- → Output Skew: 25ps (Typical)
- → Full 3.3V, 2.5V Operation Modes
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

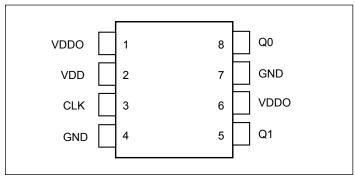

https://www.diodes.com/quality/product-definitions/

- → Packaging (Pb-free & Green):
 - Small 8-pin SOIC (W) package saves board space

Description

The PI6C49CB02J is an industrial grade low-skew, 1-to-2 LVCMOS/LVTTL high-performance fanout buffer. The PI6C49CB02J has a single-ended clock input. The single-ended clock input accepts LVCMOS or LVTTL input levels. The PI6C49CB02J features a pair of LVCMOS/LVTTL outputs. Guaranteed output and part-to-part skew characteristics make the PI6C49CB02J ideal for clock distribution applications demanding well-defined performance and repeatability.

Block Diagram


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Descriptions

Pin#	Pin Name	Pin 7	Гуре	Pin Description
1, 6	VDDO	Power	_	Output Supply Pins
2	VDD	Power	_	Core Supply Pin
3	CLK	Input	Pull-down	LVCMOS/LVTTL Clock Input
4, 7	GND	Power	_	Power Supply Ground
5	Q1	Output	_	Single Clock Output. LVCMOS/LVTTL Interface Levels.
8	Q0	Output	_	Single Clock Output. LVCMOS/LVTTL Interface Levels.

Note: Pulldown refer to internal input resistors, typical values in Pin Characteristics table.

Pin Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
C_{N}	Capacitance	_	ı	4	_	pF
R _{PULLDOWN}	Input Pull-down Resistor	_	_	51	_	kΩ
R _{OUT}	Output Impedance	_	5	7	12	Ω

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Maximum Supply Voltage, VDD, VDDO	4.6V
Inputs, V ₁	0.5V to VDD+0.5V
Output, \dot{V}_0	
Storage Temperature	
ESD Protection (HBM)	2000V
Junction Temperature	125°C (Max)

Note:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-40	_	+105	°C
Power Supply Voltage (measured in respect to GND)		_	+3.465	V

Power Supply DC Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		3.3V Operation	3.135	3.3	3.465	* 7
VDD	Core Supply Voltage	2.5V Operation	2.375	2.5	2.625	V
VDDO Output Power Supply Voltage	O ((D) C 1 V 1(3.3V Supply	3.135	3.3	3.465	3.7
	Output Power Supply Voltage	2.5V Supply	2.375	2.5	2.625	V
IDD	Power Supply Current	$T_A = -40$ °C to 85°C	_	_	5	mA
IDDO	Output Supply Current	Unloaded, 25 MHz, T _A = -40°C to 85°C	_	_	6.5	mA
IDD	Power Supply Current	$T_A = -40^{\circ}\text{C to } 105^{\circ}\text{C}$	_	_	5	mA
IDDO	Output Supply Current	Unloaded, 25 MHz, T _A = -40°C to 105°C	_	_	6.5	mA

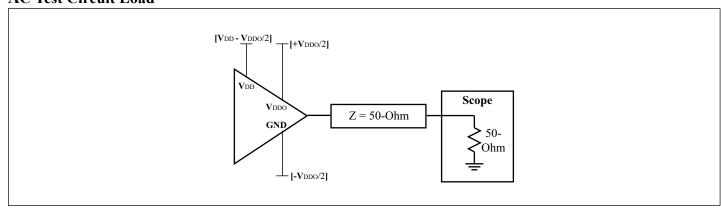
Note: Parameters measured up to f_{max} unless otherwise noted.

LVCMOS / LVTTL DC Characteristics, $T_A = -40^{\circ} C$ to $105^{\circ} C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
3.7	T TT: 1 X7 1.	VDD = 3.3V	2	_	VDD+0.3	3.7	
$V_{_{\mathrm{IH}}}$	Input High Voltage	VDD = 2.5V	1.7	_	VDD+0.3	V	
7.7	I I V-14	VDD = 3.3V	-0.3	_	0.8	17	
$V_{_{ m IL}}$	Input Low Voltage	VDD = 2.5V	-0.3	_	0.8	V	
т	Lauret III: al. Comment	$VDD = V_{IN} = 3.465V$	_	_	100		
I _{IH} Input High Current	Input High Current	$VDD = V_{IN} = 2.625V$	_	_	80	μΑ	
I _{IL} Input Low Current	Innet I are Comment	$VDD = 3.465V, V_{IN} = 0V$	-5	_	_	4	
	Input Low Current	$VDD = 2.625V, V_{IN} = 0V$	-5	_	_	μΑ	
77	Outmut High Waltage	$VDDO = 3.3V \mid I_{OH} = -100 \mu A$	2.9	_	_	V	
V_{OH}	Output High Voltage	$ VDDO = 2.5V I_{OH} = -100\mu A$	2.2	_	_	V	
V _{OL}	Output Low Voltage	$VDDO = 3.3V \mid_{OL} = 100 \mu A$	_	_	0.2	V	
	Output Low Voltage	$ VDDO = 2.5V I_{OL} = 100\mu A$	_	_	0.2	V	

4

AC Characteristics, VDD = $3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $105^{\circ}C$


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C	0	VDDO = 3.3V	4	_	250	MHz
f_{MAX}	Output Frequency	VDDO = 2.5V	4	_	250	
	D D 1 II: 1(1)	$VDDO = 3.3V, f \le 250MHz$	1.4	_	2.2	
tp _{LH}	Propagation Delay, Low-to-High ⁽¹⁾	$VDDO = 2.5V, f \le 250MHz$	1.5	_	3.0	ns
tsk(o)	Output Skew ⁽²⁾	_	_	25	80	ps
tsk(pp)	Part-to-Part Skew ⁽³⁾	_	_	250	800	ps
	Output Rise Time ⁽⁴⁾	VDDO = 3.3V	100	300	400	ps
t_{R}		VDDO = 2.5V	100	350	500	
	O (, , F 11 T) (4)	VDDO = 3.3V	100	300	400	ps
$t_{_{\mathrm{F}}}$	Output Fall Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	
		<i>f</i> ≤133MHz	48	_	52	%
odc	Output Duty Cycle ⁽⁵⁾	$133 \text{MHz} < f \le 200 \text{MHz}$	47	_	53	%
		$200 \text{MHz} < f \le 250 \text{MHz}$	47	_	53	%
t _{jit}	Additive RMS Jitter	156.25MHz (@12kHz to 20MHz)	_	0.1	_	ps
		125MHz (@12kHz to 20MHz)	_	0.07	_	ps

Note:

Parameters measured at f $_{\rm MAX}$ unless otherwise noted.

- 1. Measured from VDD/2 of the input to VDDO/2 of the output.
- 2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.
- 3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at VDDO/2.
- 4. Defined from 20% to 80%.
- 5. Measured at VDDO/2.

AC Test Circuit Load

AC Characteristics, $VDD = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $105^{\circ}C$

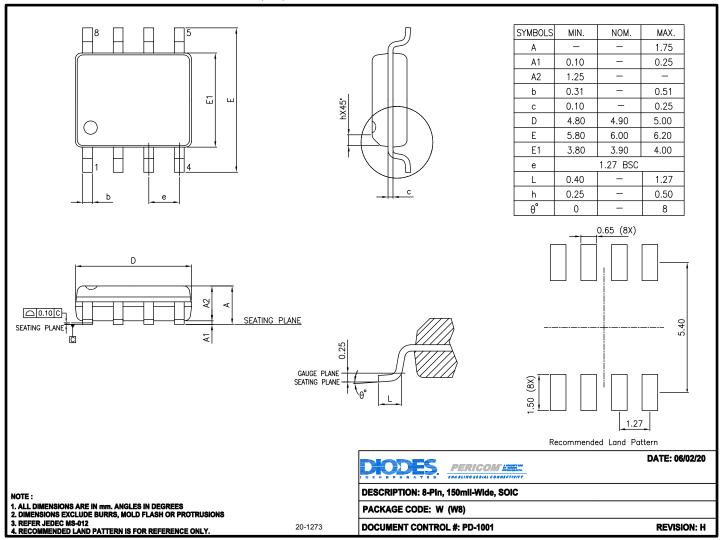
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f_{MAX}	Output Frequency	VDDO = 2.5V	4	_	250	MHz
tp _{LH}	Propagation Delay, Low-to-High ⁽¹⁾	$VDDO = 2.5V, f \le 250MHz$	1.5	_	2.8	ns
tsk(o)	Output Skew ⁽²⁾	_	_	25	75	ps
tsk(pp)	Part-to-Part Skew ⁽³⁾	_	_	250	800	ps
t _R	Output Rise Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
$\mathbf{t}_{_{\mathrm{F}}}$	Output Fall Time ⁽⁴⁾	VDDO = 2.5V	100	350	500	ps
		<i>f</i> ≤133MHz	48	_	52	%
odc	Output Duty Cycle ⁽⁵⁾	$133 \text{MHz} < f \le 200 \text{MHz}$	47	_	53	%
		$200 \text{MHz} < f \le 250 \text{MHz}$	42	_	58	%
+	A 1 lee - DA 60 lee	156.25MHz (@12kHz to 20MHz)	_	0.1	_	ps
jit	Additive RMS Jitter	125MHz (@12kHz to 20MHz)	_	0.07	_	ps

Note:

Parameters measured at f $_{\mbox{\tiny MAX}}$ unless otherwise noted.

- 1. Measured from VDD/2 of the input to VDDO/2 of the output.
- 2. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.
- 3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at VDDO/2.
- 4. Defined from 20% to 80%.
- 5. Measured at VDDO/2.

Part Marking



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 8-SOIC (W)

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Code	Package Code	Package Description
PI6C49CB02JWEX	W	8-pin, 150mil-Wide (SOIC)

Notes:

- $1.\ No\ purposely\ added\ lead.\ Fully\ EU\ Directive\ 2002/95/EC\ (RoHS),\ 2011/65/EU\ (RoHS\ 2)\ \&\ 2015/863/EU\ (RoHS\ 3)\ compliant.$
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

7

- 4. J = Industrial Grade
- 5. E = Pb-free and Green
- 6. X suffix = Tape/Reel

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com